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Meta-Analysis

What are the                   mechanisms?WIN-WIN



Meta-analysis is an interesting machine learning problem.

• Use large datasets to dramatically improve causal inferences and patient outcomes

• Scientific question-answering is an interesting unsolved problem for LLMs

• A beautiful statistical problem which exposes key challenges in uncertainty quantification

CLAIM
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Letelier et al. (2003)
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causal inference

no causal inference 
(without assumptions)

How effectively does 

amiodarone restore 

normal sinus rhythm 

to patients with atrial 

fibrillation? 
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• Rigorous and unbiased

• Loose predictions

Need strong assumptions • 

Tight predictions • 

Assumption-free inclusion of untrusted prior 

WIN-WIN

          

       

          

                        

              

                       

                     

                                       

                                 

          

       

          

                        

              

                       

                     

                                       

                                 

          

       

          

                        

              

                       

                     

                                       

                                 

CONFORMAL
META-ANALYSIS

untrusted data

trusted data

CONFORMAL META-ANALYSIS



…
…

Future

Past has residual

has residual

exchangeable, so rank of 

r* is uniform among Ri 

Conformal Prediction

(Hypothetical) Future has residual

…
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CHALLENGES

1.  Full conformal prediction is intractable

2.  Also want interval for u, not just y = N(u,v)

1.  (n is small, so cannot split the data)

Kaul and Gordon (2024)



Focus on linear smoothers
like kernel ridge regression (KRR)

Ensure idiocentricity
changing y affects r more than any Ri for linear smoothers easy to ensure for KRR

*Tolerate approximation

residuals are convex in y 

if and only ifdisjoint in y



CHALLENGES

1.  Full conformal prediction is intractable

2.  Also want interval for u, not just y = N(u,v)

1.  …but not for idiocentric linear smoothers.

Kaul and Gordon (2024)



VS

CONFORMAL CONFORMAL

independent



Idiocentricity tightly bound outer intervalExploit independence of noise 





• Formulated meta-analysis as an interesting machine learning problem

• Simplified full conformal prediction for idiocentric linear smoothers

• Addressed statistical/algorithmic challenges in handling noise 

CONTRIBUTIONS
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STATE-SPACE MODELS

Mamba and Mamba-2  [Dao and Gu, 2024]

WIN-WIN

Linear (i.e. efficient) across time, nonlinear along depth

INTERSPERSED NONLINEARITIES



Nonlinearity across time
[Kaul 2020]via iterated local corrections

Goal: approximate nonlinear RNN by a stack of 

linear systems, with nonlinearity along only depth

along depth

Theory: understand power of depth Practice: use within new models



If a state is correct…

Then its next-state multiplier is correct…

So, in the next layer, the next state 

becomes correct. 

Nonlinearity across time along depth
[Kaul 2020]via iterated local corrections

ASSUMPTION
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