Classical Improvements to Modern Machine Learning

Shiva Kaul <skkaul@cs.cmu.edu>

Utilitarian Redonic

- Nutritious
- Long-lasting
- Easy to prepare

Tastes good •

Utilitarian : Hedonic

- Nutritious
- Long-lasting
- Easy to prepare

12 EACH

FERMENTED FOODS

·米麹

Tastes good •

Classical Modern

- Efficient
- Safe (reliable, robust, interpretable)
- Easy to analyze

I inea

Feed Forward

Attention

Masked

Attention

Output

CLAIM

Meta-analysis is an interesting machine learning problem.

- Use large datasets to dramatically improve causal inferences and patient outcomes
- Scientific question-answering is an interesting unsolved problem for LLMs
- A beautiful statistical problem which exposes key challenges in uncertainty quantification

Meta-Analysis

Effect

 $U_i = \text{ATE} + N(0, \nu)$ between-trial heterogeneity

 $Y_i = U_i + N(0, V_i)$

Observed effect

within-trial variance

Open Access

Research

 0.1

BMJ Open Plea for routinely presenting prediction intervals in meta-analysis

Joanna IntHout.¹ John P A Ioannidis.^{2,3,4,5} Maroeska M Rovers.¹ Jelle J Goeman¹

Letelier et al. (2003)

Galperin et al²⁹ (2000) 33.7 (2.08-546.00) 95 Bianconi et al²⁸ (2000) 2.04 (0.19-22.00) 83 Villani et al¹¹ (2000) 4.75 (1.60-14.00) 120 Hohnloser et al³ (2000) 3.13 (1.5-6.70) 203 Natale et al²⁵ (2000) 5.12 (2.60-10.00) 85 Cowan et al¹⁶ (1986) 1.11 (0.78-1.58) 34 Noc et al¹⁷ (1990) 18.00 (1.17-276.00) 24 Capucci et al¹⁸ (1992) 0.77 (0.37-1.62) 40 Cochrane et al¹⁹ (1994) 1.15 (0.91-1.44) 30 Hou et al²¹ (1995) 1.29 (0.97-1.72) 39 Kondili et al²² (1995) 1.33 (0.71-2.47) 42 Donovan et al²⁰ (1994) 1.05 (0.69-1.60) 64 Galve et al²³ (1996) 1.13 (0.84-1.52) 100 Kontoyannis et al²⁴ (1998) 1.42 (1.08-1.85) 42 Bellandi et al²⁶ (1999) 1.41 (1.15-1.72) 120 Kochiadakis et al¹² (1999) 1.46 (1.19-1.78) 204 Cotter et al²⁷ (1999) 1.43 (1.15-1.8) 100 Peuhkurinen et al³⁰ (2000) 2.45 (1.49-4.02) 62 Vardas et al³¹ (2000) 2.01 (1.55-2.6) 208 Joseph and Ward³² (2000) 1.32 (095-1.80) 75 Cybulski et al³³ (2001) 1.87 (1.37-2.55) 160

[Future]

95% CI 95% PI for u 95% PI for y

Meta-Analysis

Features VarianceEffect $(X_i, U_i, V_i) \sim \mathbb{P}$

 $Y_i = U_i + N(0, V_i)$

Observed effect

Galperin et al²⁹ (2000) 33.7 (2.08-546.00) 95 Bianconi et al²⁸ (2000) 2.04 (0.19-22.00) 83 Villani et al¹¹ (2000) 4.75 (1.60-14.00) 120 Hohnloser et al³ (2000) 3.13 (1.5-6.70) 203 Natale et al²⁵ (2000) 5.12 (2.60-10.00) 85 Cowan et al¹⁶ (1986) 1.11 (0.78-1.58) 34 Noc et al¹⁷ (1990) 18.00 (1.17-276.00) 24 Capucci et al¹⁸ (1992) 0.77 (0.37-1.62) 40 Cochrane et al¹⁹ (1994) 1.15 (0.91-1.44) 30 Hou et al²¹ (1995) 1.29 (0.97-1.72) 39 Kondili et al²² (1995) 1.33 (0.71-2.47) 42 Donovan et al²⁰ (1994) 1.05 (0.69-1.60) 64 Galve et al²³ (1996) 1.13 (0.84-1.52) 100 Kontoyannis et al²⁴ (1998) 1.42 (1.08-1.85) 42 Bellandi et al²⁶ (1999) 1.41 (1.15-1.72) 120 Kochiadakis et al¹² (1999) 1.46 (1.19-1.78) 204 Cotter et al²⁷ (1999) 1.43 (1.15-1.8) 100 Peuhkurinen et al³⁰ (2000) 2.45 (1.49-4.02) 62 Vardas et al³¹ (2000) 2.01 (1.55-2.6) 208 Joseph and Ward³² (2000) 1.32 (095-1.80) 75 Cybulski et al³³ (2001) 1.87 (1.37-2.55) 160

 \rightarrow X_1

1-α PI for *u*

1-α PI for *y*

 $1-\alpha \leq \mathbb{P}(y \in C(x,v))$ $1-\alpha \leq \mathbb{P}(u \in C(x))$

How effectively does amiodarone restore normal sinus rhythm to patients with atrial fibrillation?

no causal inference (without assumptions)

Cohort Studies

Systematic

Randomized Controlled Trials (RCTs)

M

- R

÷.

Z,

Ŧ

causal inference

Case-Controlled Studies

Cross-Sectional Studies / Surveys

Case Series / Reports

Background Information / Expert Opinion

- Rigorous and unbiased
- Loose predictions

Trusted data Untrusted data

- Need strong assumptions
	- Tight predictions •

 $0.90 \leq \mathbb{P}(r^* \text{ among lowest } 20 \text{ of } R_i)$ $C(x, v) = \{y : r \text{ among lowest } 20 \text{ of } R_i\}$

$$
0.90 \leq \mathbb{P}(y^* \in C(x, v))
$$

Conformal Prediction

[Future]

 $C(x, v) = \{y : r \text{ among lowest } 20 \text{ of } R_i\}$ 90% PI for y ??????????????????

train on everything for exchangeability

 \mathcal{Y}

train on everything for exchangeability

train on everything for exchangeability

CHALLENGES 1. Full conformal prediction is intractable **2.** Also want interval for u , not just $y = N(u,v)$ (*n* is small, so cannot split the data) *Kaul and Gordon (2024)*

Focus on linear smoothers $R_i = ...|A_iy + B_i|...$ $r = ...|ay + b|...$

like kernel ridge regression (KRR)

Ensure idiocentricity

changing *y* affects *r* more than any *Rⁱ*

*Tolerate approximation

$$
|a| > |A_i| \iff \lambda \ge \max_x \kappa(x, x)
$$

residuals are convex in *y*

for linear smoothers easy to ensure for KRR

 $C(x, v) \subseteq \begin{bmatrix} 2nd \text{ lowest} \\ \text{left end of } L_i \end{bmatrix}$, right end of L_i

CHALLENGES

1. Full conformal prediction is intractable ... but not for idiocentric linear smoothers.

2. Also want interval for u , not just $y = N(u,v)$

Kaul and Gordon (2024)

independent

VS

Exploit independence of noise $\mathcal E$ ldiocentricity \rightarrow tightly bound outer interval

CONTRIBUTIONS

- Formulated meta-analysis as an interesting machine learning problem
- Simplified full conformal prediction for idiocentric linear smoothers
- Addressed statistical/algorithmic challenges in handling noise

ting clinicians to

Christopher | Rryan \boxtimes Elizabeth Tipton \boxtimes & David S. Vegger \boxtimes

, or studies

Linear

- Efficient (*O(T)* memory) and
- Fast (*O(log T)* parallel time via scans)
- Unexpressive

$$
h_t = A_t h_{t-1} + B_t x_t
$$

(Time-varying) Linear dynamical system

Nonlinear

- Inefficient ($O(T^2)$ memory) or \bullet
	- Slow (*O(T)* parallel time)
		- Expressive •

$$
h = \psi(Q(x)K(x))V(x)
$$
Attention

$$
h_t = \rho(A_t h_{t-1} + B_t x_t)
$$

Recurrent neural network

Nonlinearity across time along depth via iterated local corrections *[Kaul 2020]*

Goal: approximate nonlinear RNN by a stack of linear systems, with nonlinearity along only depth

Theory: understand power of depth **Practice:** use within new models

The Illusion of State in State-Space Models

Theoretical Foundations of Deep Selective State-Space Models

Nicola Muca Cirone¹ Antonio Orvieto² Benjamin Walker³ Cristopher Salvi¹ Terry Lyons³

Abstract

Structured state-space models (SSMs) such as S4, stemming from the seminal work of Gu et al., are gaining popularity as effective approaches for modeling sequential data. Deep SSMs demon-

achieve state-of-the-art results on long-range-reasoning benchmarks (Tay et al., 2020) and show outstanding performance in various domain including vision (Nguyen et al., 2022), audio (Goel et al., 2022), biological signals (Gu et al., 2021), reinforcement learning (Lu et al., 2023) and online learning (Zucchet et al., 2023). SSMs recently have gained

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality

Tri Dao^{*1} and Albert Gu^{*2}

Department of Computer Science, Princeton University

["]Machine Learning Department, Carnegie Mellon University tri@tridao.me, agu@cs.cmu.edu

Nonlinearity across time along depth via iterated local corrections *[Kaul 2020]*

$$
s_0^{(1)} = s_0 = h_0
$$
\n
$$
s_1 = a_1 \cdot s_0 + b_1 x_1
$$
\nIf a state is correct...\n
$$
s_1 = a_1 \cdot s_0 + b_1 x_1
$$

Then its next-state multiplier is correct…

So, in the next layer, the next state becomes correct.

$$
k_1 = \frac{\rho(a_1 \cdot s_0 + b_1 x_1)}{a_1 \cdot s_0 + b_1 x_1} = \frac{\rho(a_1 \cdot h_0 + b_1 x_1)}{a_1 \cdot h_0 + b_1 x_1} = \frac{h_1}{a_1 \cdot h_0 + b_1 x_1}
$$

$$
s_1^{(1)} = k_1 \cdot (a_1 \cdot s_0^{(1)} + b_1 x_1)
$$

ASSUMPTION

 $\rho(0)/0$

$$
=k_1\cdot (a_1\cdot h_0+b_1x_1)=h_1
$$

Nonlinearity across time along depth via iterated local corrections *[Kaul 2020]*

 $h_t = \rho(a_1 \cdot h_{t-1} + b_1 x_1)$ $s_0^{(1)} = s_0 = h_0$ $s_t^{(0)} = a_t \cdot s_{t-1}^{(0)} + b_t x_t$ *If a state is correct…* $k_t^{(i)} = \frac{\rho(a_ts_{t-1}^{(i-1)} + b_tx_t)}{a_ts_{t-1}^{(i-1)} + b_tx_t} \quad k_i^{(i)} = \frac{h_i}{a_ih_{i-1} + b_ix_i}$ *Then its next-state multiplier is correct…* $s_t^{(i)} = k_t^{(i)} \cdot (a_t \cdot s_{t-1}^{(i-1)} + b_t x_t)$ *So, in the next layer, the next state becomes correct.* $s_i^{(i)} = k_i^{(i)} \cdot (a_i \cdot h_{i-1} + b_i x_i) = h_i$

 $s^{(0)}$ $\rho = \text{ReLU}$ \hbar $s^{(1)}$ \hbar $s^{(2)}$ \boldsymbol{h} $s^{(3)}$ \boldsymbol{h} $s^{(4)}$ $\mu = s^{(5)}$

