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Abstract
Meta-analyses are usually conducted on small
amounts of “trusted” data, ideally from random-
ized, controlled trials. Excluding untrusted (ob-
servational) data — such as medical records and
related scientific literature — avoids potential
confounding and ensures unbiased conclusions.
Unfortunately, this exclusion can reduce predic-
tive accuracy to the point of clinical irrelevance,
especially when trials are heterogeneous. This
paper shows how untrusted data can be safely
incorporated into meta-analysis, improving pre-
dictions without sacrificing rigor or introducing
unproven assumptions. Our approach, called
conformal meta-analysis, consists of (1) learning
a (potentially flawed) prior distribution from the
untrusted data, (2) using the prior and trusted
data to derive a simple, fully-conformal predic-
tion interval for the observed trial effect, and (3)
analytically extracting an interval for the true
(unobserved) effect. In multiple experiments
on healthcare datasets, our algorithms deliver
tighter, sounder intervals than traditional ones.
This paper conceptually realigns meta-analysis
as a foundation for evidence-based medicine,
embracing heterogeneity and untrusted data for
more nuanced, precise predictions.
Keywords: meta-analysis, conformal predic-
tion, noise-tolerant learning, ridge regression

Data and Code Availability This paper uses
publicly-available datasets from the Penn Machine
Learning Benchmark (Olson et al., 2017). It also
collects a small, novel clinical trial dataset to fa-
cilitate a case study. This dataset, along with
code replicating the experiments, is available at
https://github.com/shivak/conformal-meta.

Institutional Review Board (IRB) This pa-
per focuses on the statistical methodology of meta-
analysis. As such, it does not require ethical review.

1. Introduction

Meta-analysis is the statistical bedrock of evidence-
based medicine, underpinning most modern clinical
practice guidelines (Higgins et al., 2019; Hoffmann
et al., 2021). As depicted in Figure 1, meta-analysis
can be thought of as a structured analogue to language
models for answering scientific questions in a rigorous,
unbiased manner. In meta-analysis, the training data
are n randomized, controlled trials. In each trial, there
is an observed effect Yi ∈ R, which is the average
difference in outcomes between the patients assigned
the treatment and those assigned the control. Due
to the limited number of patients, the observed Yi is
a noisy version of the true, unobserved effect Ui ∈
R. We model this as Yi ∼ N(Ui, Vi), where Vi > 0
is an observed variance (larger trials tend to have
smaller Vi). This model is reasonable because Yi is an
unbiased sample average over individual patients and
is thus subject to the central limit theorem. Each trial
also has features Xi which describe aspects of how
the trial was conducted; for example, the mean age of
the patients, the dosage of the drug, and the duration
of the treatment. The goal is to learn a predictor C
of causal effect: given the features of a future trial x
whose true effect is u, we want the prediction interval
C(x) ⊆ R to contain u with high probability.

It is somewhat unusual to describe meta-analysis as
a prediction problem involving features. Meta-analysis
is more commonly viewed as a basic inferential prob-
lem, where the task is to produce a confidence interval
for the average treatment effect (ATE, the true mean
of the Ui and u) by ignoring the Xi and appropri-
ately averaging the Yi. However, the global average is
less clinically informative than the effects for specific
circumstances described by the features (Simonsohn
et al., 2022; Subramanian et al., 2018; Gould, 2010;
Feinstein, 1995). Even when ignoring features, re-
porting prediction intervals is strongly encouraged to
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POPULATIONS: any age, AF of any duration, …

INTERVENTIONS: any dosage, IV or oral, …

COMPARISONS: placebo, standard care, …

OUTCOMES: normal rhythm within 1 day, ... 
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CONFORMAL
META-ANALYSIS(e.g. 400 mg oral QID for 60+ males with persistent AF) 

containing true effect with high probability

Specific

domain

untrusted data

trusted data

Figure 1: How conformal meta-analysis answers scientific questions. First, a relatively broad domain X for the
meta-analysis is determined, possibly through interaction with the user. This allows more expansive questions which
include more data. Next, both trusted and untrusted data relevant to X are retrieved. Conformal meta-analysis takes
these and produces not just a single interval, but a predictive model C. Given specific trial circumstances x, the model
predicts C(x) which, under standard assumptions, contains the true effect with high probability.

convey the variation of u around ATE (IntHout et al.,
2016; Riley et al., 2011; Borenstein, 2024).

There is an obvious, albeit unfortunate reason why
prevalent meta-analysis algorithms ignore features:
they involve just a tiny number of trials, far too small
to train a predictor of u given x. This number n is
usually around 10 or 20 (Hoffmann et al., 2021), and
reaches only about 500 on the upper end (Cipriani
et al., 2018). The reason for this shortfall: randomized,
controlled trials are trusted to support causal conclu-
sions, but they are expensive and rare. Untrusted,
observational data — including medical records, insur-
ance claims, related scientific literature, and personal
experience — are far more voluminous, but can be
badly confounded. Extracting causal conclusions from
them requires unproven, possibly dubious assumptions.
These are unacceptable in meta-analysis, which is sup-
posed to authoritatively validate the conclusions of
earlier research in their entirety.

Since prevalent algorithms ignore x, their (mono-
lithic) prediction intervals C(x) must be wide enough
to accommodate nearly all x. Among meta-analyses
whose confidence intervals exclude the null effect,
about one-third have prediction intervals which in-
clude it (IntHout et al., 2016). This imprecision makes

it difficult to establish good scientific evidence in fields
with heterogeneous trials, i.e. when substantial vari-
ation in x leads to concomitant variation in u. For
example, in exercise science, the treatment effect may
strongly depend on a large number of variables such
as frequency, duration, equipment, technique, age,
and diet (Rippetoe, 2017; Ferreira et al., 2010). In
most psychological research, the variation in u is at-
tributable primarily to between-study heterogeneity
rather than within-study sampling variance (Stanley
et al., 2018). Because prediction intervals tend to
be so wide, few meta-analyses bother to even report
them (Seehra et al., 2021; Borg et al., 2024), despite
their clinical importance.

1.1. Our Approach

This paper demonstrates that untrusted data — with
all its possible confounding, biases, and even out-
right errors — can be incorporated into meta-analysis
while remaining rigorous and unbiased. In fact, this
paper offers stronger, provable guarantees while weak-
ening the assumptions traditionally employed in meta-
analysis. The solution is based upon conformal pre-
diction (Vovk et al., 2005, 2009; Lei et al., 2018; An-
gelopoulos et al., 2023b). While conformal prediction
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aptly manages the inclusion of untrusted data, there
are two unresolved challenges when applying it to
meta-analysis. The first challenge is noise: though
we aim to predict true effects u, the observed effects
Yi ∼ N(Ui, Vi) are blurred by limited trial sizes. This
noise is curiously challenging to manage, since small
(high noise) studies can have fundamentally different
designs than large (low noise) studies. This reflects
difficulties in clinical practice, where large-scale trials
routinely fail to confirm the results of smaller ones
(Ioannidis, 2005; Komajda et al., 2010; Manson et al.,
2019). The second challenge arises from the limited
sample (n ≤ 500) of included trials. This essentially
mandates the use of full (rather than split) conformal
prediction, which poses a computational burden, and
complicates efforts to handle noise.

We resolve the aforementioned challenges of ap-
plying conformal prediction, giving rise to conformal
meta-analysis. This approach consists of the following
layers: (1) representation of the untrusted data as
a Gaussian process prior (i.e. a mean function µ(x)
predicting u and a kernel function κ(x, x′) quantifying
similarity and uncertainty), (2) a simple implementa-
tion of full conformal prediction of y, based on residu-
als produced by kernel ridge regression (KRR), and
(3) a strategy for predicting u, exploiting the simplic-
ity of the conformal intervals for y. To obtain (2), we
show that sufficiently high regularization makes KRR
idiocentric: as y varies, the residual for the example
(x, y) changes more than the other residuals. Under
this condition, fully-conformal KRR can be simplified
to computing quantiles in two lists. Its simplicity
allows us to prove that its prediction intervals for y
typically contain the true effects u as well, with just
a slight loss in confidence — thereby achieving (3).

Our experiments have two goals: (1) to quantify
how much conformal meta-analysis could improve pre-
dictions when used, as intended, with large amounts
of untrusted data, and (2) to more qualitatively assess,
before such data are available, how it would impact the
experience of producing and consuming meta-analyses.
At a high level, we find that conformal meta-analysis
could improve how the medical community interacts
with evidence.

2. Preliminaries

These are the predictive goals of meta-analysis, as
informally described in the previous section. Read-
ers unfamiliar with meta-analysis are encouraged to
review the background material in Appendix A.

Task 1 (Predicting Effects) Let (X1, U1, V1),
. . . , (Xn, Un, Vn), (x, u, v) be exchangeable random
variables, where Xi, x ∈ X are trial features, Ui, u ∈ R
are (unobserved) effects, and Vi, v > 0 are variances.
Let Yi = Ui+Ei, where independently Ei|Vi ∼ N(0, Vi).
Let µ : X → R and κ : X ×X 7→ R be fixed mean and
positive-definite kernel functions defining a Gaussian
process. From (µ, κ), the (Xi, Yi, Vi), and x, for a
desired confidence level α ∈ (0, 1), produce an inter-
val C(x) such that P(u ∈ C(x)) ≥ 1 − α, where the
probability is over all the random variables.

Task 2 (Predicting Trials) Same as above, except
C also takes v, and should satisfy P(y ∈ C(x, v)) ≥
1− α, where y = u+ ε for independent ε|v ∼ N(0, v).

The first task is more practically useful and technically
involved. However, since u is not observable, but y
is, the second task is more easily verifiable. It is not
immediately clear which task is more challenging, in
the sense of needing wider intervals. On one hand, y
has inherently more variance than u. On the other,
the prediction of u is made without knowing v, which
might otherwise distinguish between small and large
trials having characteristically different u.

Note about assumptions. The random-effects
model of meta-analysis (DerSimonian and Laird, 1986;
Higgins et al., 2009) underlies the majority of pub-
lished meta-analyses. Both Task 1 and Task 2 make
the same assumptions as this standard model, with
two exceptions. The standard model assumes that
the true effects U1, . . . , Un, u are normally distributed
around the average effect ATE. We make no such nor-
mality assumption; in this sense, our approach is more
robust than the usual one. Our only non-standard as-
sumption is that the untrusted data are fixed relative
to the trusted data, i.e. the randomized, controlled
trial results are not copied back into the prior. This
assumption can be mechanically enforced by explicitly
excluding the trials from the prior. See Appendix A.4
and Appendix A.5 for further discussions about our
(relatively lightweight) assumptions.

2.1. Related Work (Continued in Appendix)

Causal inference from observational data. Per-
forming randomized, controlled trials is not the only
way to estimate causal effects. After making appropri-
ate assumptions, causal inferences can be extracted
from observational data (Imbens and Rubin, 2015;
Pearl, 2009; Spirtes et al., 2001). This is an extensive
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research endeavor encompassing many fields; we men-
tion some of the most relevant work here. The survey
by Colnet et al. (2024) discusses various approaches
to integrating RCTs with observational data. To es-
timate the CATE, causal forests (Wager and Athey,
2018) and metalearners (Künzel et al., 2019) combine
machine learning techniques with causal reasoning.
The most widespread assumption of such methods is
ignorability, or unconfoundedness. It requires that,
having observed the features x, the treatment assigned
to a participant is independent of their potential out-
comes ρ(0) and ρ(1). That is, there are no unmea-
sured variables outside of x that could bias treatment
towards different participants. Another widespread
assumption is positivity, or overlap: for every x, both
the treatment and the comparison have a chance of
being assigned.

Such strong, unproven assumptions are plausible
in many circumstances, but they are not appropriate
for systematic reviews. At some point, assumptions
must be tested; systematic reviews, more confirmatory
than exploratory in nature, often serve this crucial
purpose. Nevertheless, conformal meta-analysis allows
causal inference methods to be (indirectly) used in
systematic reviews, without any concerns about their
unproven assumptions. These methods can ideally be
used to extract better µ and κ from the untrusted
data. Thus, conformal meta-analysis doesn’t replace
these methods; rather, it expands their domain of
application to more scientific settings.

Conformal prediction of latent variables. Pre-
vious works have examined how to conformally predict
an underlying u while observing only noisy Y1, . . . , Yn.
It is often empirically observed that conformal pre-
diction can be obliviously robust to label noise, in
the sense that C(x), without any involvement of V
or v, manages to covers u without any loss in confi-
dence. However, provable guarantees remain elusive.
Feldman et al. (2023) show that if C(x) always con-
tains the median of u | x, then C(x) covers u with
no loss in confidence. This is a very strong assump-
tion in meta-analysis, as it essentially posits that
the relationship between x and u has been globally
determined, and the main difficulty of conformal pre-
diction is to account for the uncertainty driven by
the unobserved variables ξ. Most approaches to (non-
obliviously) handling noise involve some modification
to split conformal prediction. In classification, the
(discrete) labels may be noisy because they are the
majority vote from some underlying probability distri-
bution, which reflects uncertainty over the true class.

Stutz et al. (2023) adapt split conformal prediction
to account for this uncertainty by sampling multiple
labels from the underlying distribution. Sesia et al.
(2023) and Penso and Goldberger (2024) modify split
conformal prediction to estimate the amount of over
(or under) coverage of C(x). Unfortunately, splitting
the data is not feasible in meta-analysis, where n is
small. Label noise should be distinguished from label
shift, when the training Y1, . . . , Yn are sampled from
a different distribution than the test y (Podkopaev
and Ramdas, 2021).

3. Conformal Meta-Analysis
This section presents the three steps of conformal
meta-analysis. Section 3.1 describes how a prior (µ, κ)
can be learned from untrusted data. Our focus is
not on strategies for learning such priors, but on un-
derstanding the potential benefits of incorporating
them into meta-analysis. Section 3 applies conformal
prediction in conjunction with KRR. This yields a
set C(x, v) which contains y with the required prob-
ability, regardless of the veracity of (µ, κ). Under a
novel condition called idiocentricity, we show C(x, v)
becomes a simple interval for all linear smoothing
methods. (We chose KRR primarily because it can
incorporate µ and κ). Finally, Section 3.2 describes
how a prediction interval C(x) for u can be extracted
from C(x, v), with just a small drop in coverage prob-
ability. This can be proven (in Theorem 12) because,
under idiocentricity, C(x, v)’s width as a function of
v can be tightly bounded.

3.1. Untrusted Data as a Prior Distribution

As depicted in Figure 1, untrusted data form the lower
levels of the evidence hierarchy: observational stud-
ies, individually-published cases, hands-on experience,
and personal belief (Murad et al., 2016). It is difficult
to rigorously infer causation from such untrusted (or
“real-world”) data, since they are observational and
may have deeply-embedded biases. Nonetheless, it
is often found that untrusted data agree with RCTs
(Benson and Hartz, 2000; Concato et al., 2000). Un-
trusted data originate from different kinds of sources
and experiences; for example, in Section 5, they stem
partially from background knowledge, and partially
from RCTs that would be excluded from the meta-
analysis. A modern approach to capturing large, dis-
parate collections of knowledge is to (pre)train founda-
tion models. Such models are already being developed
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1 def predict_trial(Y, V̅ , M̅ , K̅ , α, η):

2 n = len(Y); τ = ceil((1-α)*(n+1)).astype(int32)

3 if τ > n: return -inf, inf # not enough training trials for conformal prediction

4 λ = amax(diag(K̅ )) # ensure idiocentricity, per Theorem 6

5 G, H = theorem4(Y, V̅ , M̅ , K̅ , α, η, λ) # r <= Rᵢ iff y in interval Lᵢ, where Lᵢ=Gᵢ±Hᵢ

6 Ln, Lp = G-H, G+H # lower and upper endpoints of the intervals

7 yn = flip(sort(Ln))[τ-1] # return quantiles of the lower and upper endpoints

8 yp = sort(Lp)[τ-1]

9 return yn, yp

Algorithm 1: Python/NumPy code for conformal prediction of an (empirical) effect y. Y is a vector of the n training
trial effects; V̄ = [V ; v], M̄ , and K̄ are the effect variances, prior means, and prior kernel matrix for all n+ 1 trials,
both training and testing. Algorithm 3 in Appendix B.2 implements the computations involved in Theorem 4.

for healthcare (Moor et al., 2023; Singhal et al., 2023;
Tu et al., 2024). When applied to meta-analysis, this
approach would involve learning an embedding φ(x)
which maps trial features x into a Euclidean space
having inner product κ(x, x′) = φ(x)Tφ(x′). On top
of this embedding, a linear predictor of u could be
trained as µ(x) = wTφ(x). We will call the Gaussian
process defined by (µ, κ) a prior, since it is trained sep-
arately from the trials included in the meta-analysis.
However, unlike in Bayesian meta-analysis, this prior
is untrusted; our predictions must retain coverage
guarantees even if the prior has severe flaws. See Ap-
pendix A.5 for further discussion of untrusted data.

3.2. (Simply) Predicting Trials

This section develops Algorithm 1 for Task 2. The pa-
rameter η ≥ 0 controls the extent of noise correction.
Theorem 1 (Conformal Trial Prediction) Let
η ≥ 0. In the setting of Task 2, Algorithm 1 returns
[y−, y+] satisfying P(y ∈ [y−, y+]) ≥ 1− α.
This algorithm is derived by calculating KRR’s
residuals, obtaining the conformal prediction inter-
val C(x, v), and simplifying it under idiocentricity.
Given a ridge parameter λ ∈ R, prior (µ, κ), and
length-(n + 1) dataset ([X;x], [Y ; y]), KRR learns a
posterior (µ̂, κ̂). Let the posterior mean on [X;x] be
[M̂ ; m̂]. Let the diagonal of the posterior kernel matrix
be [S2; s2]. Let Zi = EE,ε(M̂i−Yi)

2− (M̂i−Ui)
2 ≥ 0

and z = EE,ε(m̂− y)2− (m̂−u)2 ≥ 0 be the expected
impact of the noise upon the squared training errors.
Though other choices are possible, we define the resid-
uals as follows, using the expected impacts [Z; z] to
correct for within-trial variation:

Ri =
(
(M̂i − Yi)

2 − ηZi

)
/S2

i r =
(
(m̂− y)2 − ηz

)
/s2

Subtracting (an η fraction of) Zi and z effectively re-
duces the importance of smaller (noisier) trials. Con-
cretely deriving these residuals for KRR, with normal
noise in Y , is basic linear algebra and probability. As
Appendix B.2 shows, the residuals are squares of affine
functions in y. That is, for some Ai, Bi, a, and b:

Ri =
(Aiy +Bi)

2 − ηZi

S2
i

r =
(ay + b)2 − ηz

s2
(1)

Residuals of this form are actually shared by any learn-
ing algorithm where [M̂ ; m̂] are linear in [Y ; y], albeit
being nonlinear in [X;x]. Such algorithms, called lin-
ear smoothers, include k-nearest neighbors, Nadaraya-
Watson kernel regression, and smoothing splines (Buja
et al., 1989). With these residuals defined, we can
apply (full) conformal prediction. Remarkably, this
yields a rigorous prediction set C(x, v), regardless of
the veracity of the untrusted data, or the complexity
of the prior trained upon it.

Proposition 2 (Conformal Prediction) Let
(X1, Y1, V1), . . . , (Xn, Yn, Vn), (x, y

∗, v) be exchange-
able. Let [R; r] be the residuals (1) of a symmetric
(i.e. unaffected by the order of its inputs) learning
algorithm upon the augmented data [X;x], [Y ; y] and
[V ; v]. Given any α ∈ (0, 1), let τ = d(1− α)(n+ 1)e.
Define the prediction interval as C(x, v) = {y :
r is among the τ smallest of R1, . . . , Rn}. Then
P(y∗ ∈ C(x, v)) ≥ 1− α. (Vovk et al., 2005)

Burnaev and Nazarov (2016), building upon Nouretdi-
nov et al. (2001), derived an algorithm for computing
C(x, v) for KRR. Though their algorithm is compu-
tationally efficient, it returns a general prediction set
(a union of disjoint intervals and singletons) which
isn’t amenable to analytic reasoning. We substantially
simplify the algorithm under the following condition.
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Definition 3 (Idiocentricity) The residuals in (1)
are idiocentric if |a|

s > |Ai|
Si

for all i.

This condition means that changing the test example’s
y changes its own residual more than it changes the
residuals of other examples. (It can be generalized in
terms of derivatives, but we keep it specific to linear
smoothers for the presentation here). First, let us
show how idiocentricity simplifies C(x, v).

Theorem 4 For i = 1, . . . , n, let ρi = η(Zis
2−zS2

i ).
Define intervals Li = Gi ±Hi, where:

Gi =
AiBis

2 − abS2
i

(aSi)2 − (Ais)2
and

Hi =

√
max

(
0, s2S2

i (Aib−aBi)2−ρi((aSi)2−(Ais)2)
)

(aSi)2−(Ais)2

With idiocentric residuals (1), C(x, v) simplifies to
{y : y is inside more than n− τ of the L1, . . . , Ln}.

Proof Since the residuals defined in (1) are squared,
we can flip the signs of b and Bi to standardize on
a,Ai ≥ 0. r ≤ Ri rewrites to S2

i (ay + b)2 + ρi ≤
s2(Aiy+Bi)

2. Under the condition a/s > Ai/Si ≥ 0,
this is equivalent to y ∈ Li.

We slightly loosen the defining condition of C(x, v) to
obtain an even simpler algorithm.

Lemma 5 In the notation of Theorem 4, let y+ be
above τ of the upper endpoints of the Li, and let y−
be below τ of the lower endpoints of the Li. Then
C(x, v) ⊆ [y−, y+].

Proof The upper endpoint y+ is met when, for τ of the
i ∈ {1, . . . , n}, we have y+ ≤ Li or y+ ≥ Li. Ignore
the first possibility, which becomes more unlikely as
y+ increases, for a potentially looser but nonetheless
valid interval. A similar argument justifies y−.

Next, we show that KRR is idiocentric when the ridge
parameter λ is set sufficiently large.

Theorem 6 The residuals in (1) are idiocentric if
λ ≥ max{κ(X1, X1), . . . , κ(Xn, Xn), κ(x, x)}.

To prove Theorem 1, use the λ of Theorem 6 to earn
the simplified interval of Theorem 4, which is sup-
ported by the coverage guarantee of Theorem 2.

Alternative Choices of λ. Throughout the re-
mainder of this paper, λ is chosen to satisfy Theorem 6.
(The satisfying value is hardcoded in line 4 of Algo-
rithm 1). However, the bound given by Theorem 6

can be loose. With the training and test examples
held fixed, for any given value of λ, idiocentricity can
be numerically verified by simply computing the terms
in the definition. Since these terms don’t depend on
the test example’s y, a grid search can be used to find
the smallest λ which ensures idiocentricity, without
interfering with the ensuing conformal prediction.

A smaller value of λ may potentially be statistically
desirable, since it controls the balance between fitting
the data and staying close to the prior. Note the
equation (7) for the posterior mean M̂ : at λ = 0,
KRR interpolates the data, and as λ → ∞, KRR
ignores the data and sticks with the prior. Smaller
λ could potentially be preferable when n is relatively
large, justifying a posterior farther from the prior.
However, the optimal setting of λ for regression may
not coincide with the optimal setting for conformal
prediction. For example, λ = 0 can be effective for
“ridgeless” regression (Hastie et al., 2022; Liang and
Rakhlin, 2020), but it is useless for full conformal
prediction, since its residuals are all zero.

3.3. Predicting Effects

The culmination of this paper is Algorithm 2, for pre-
dicting causal effects, which builds upon Algorithm 1.
The proof of its coverage guarantee is technical, so
it is reserved for Appendix B.4. Here, let us simply
understand its statement in the following theorem.

Theorem 7 (Conformal Effect Prediction) Let
η ≥ 0. In the setting of Task 1, Algorithm 2 re-
turns [u−, u+] satisfying P(u ∈ [u−, u+]) ≥ 1 −

α
(1−α)erfc

√
η/2

.

Setting η = 0 (i.e. disabling noise correction) obtains
confidence 1−2α

1−α , which is just a slight loss from 1−α
when α ≈ 0. (For example, 0.95 confidence drops
to 0.9473, which probably doesn’t change τ = d(1−
α)(n+ 1)e). This setting is appropriate when V ≈ 0,
i.e. the trials all have a large number of participants.
By setting η = 2 · inverfc( 1

c(1−α) )
2, the confidence

drops to 1−c·α. More noise correction is conceptually
more appropriate when analyzing mixtures of small
and large trials. However, the loss of confidence means
larger n is needed, which may not be a worthwhile
tradeoff. Conformal prediction is usable only when
τ ≤ n; with c = 2, a final confidence of 95% requires
n ≥ 40, which is twice the n needed for η = 0.

While the overhead at η = 0 is not practically
important, it indicates either the algorithm or its
analysis are suboptimal. When meta-analysis is very
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1 def predict_effect(Y, V, M̅ , K̅ , α, η):

2 V̅ = append(V, 0) # as if the test trial had zero effect variance

3 return predict_trial(Y,V̅ ,M̅ ,K̅ ,α,η)

Algorithm 2: Python/NumPy code for conformal prediction of an effect u. It submits v = 0 to Algorithm 1.

close to regression (V ≈ 0), the 1−α coverage of The-
orem 2 should be smoothly recovered. Appendix B.5
present another approach which behaves correctly
in this regard. It is based on fundamentally differ-
ent techniques which can be extended to non-normal
(i.e. merely bounded) noise. It determines a probabil-
ity 1−δ region U for the true effects U . Then, it poses
an optimization problem to bound all the intervals
which could have been generated by any Û ∈ U .

Theorem 8 (Conformal Effect Prediction) Let
δ > 0. In the setting of Task 1, the respective so-
lutions u− and u+ to (9) and (10) in Appendix B.5
satisfy P(u ∈ [u−, u+]) ≥ (1− α)(1− δ).

4. Experiments
This paper is the first to study meta-analysis with the
involvement of untrusted priors and features. There
are no existing meta-analytic datasets upon which
we can quantitatively evaluate our methods, and gen-
erating such a dataset is a significant undertaking.
Thus, our main experiments use partially-synthetic
data. We performed four types of simulations on three
biomedical datasets from the Penn Machine Learning
Benchmark (Olson et al., 2017). These regression
datasets define K and Y ; we generated synthetic M
and V according to parameters prior error ≥ 0 and
effect noise ≥ 0, respectively. We use Algorithm 2
with η = 0. We compare it to the state-of-the-art
HKSJ method, which is described in Appendix A.6.

Simulation 1: This investigates when conformal
meta-analysis is superior to traditional meta-analysis.
For different settings of prior error, we compare the
widths of the intervals obtained by different meta-
analysis algorithms. The only situation in which
HKSJ is competitive with conformal meta-analysis
is when the prior is bad and the number of trials is
small/moderate. Otherwise, conformal meta-analysis
is superior, sometimes achieving intervals that are
dramatically thinner than those of HKSJ.

Simulation 2: This experiment checks whether the
desired 95% confidence level is still achieved as effect
noise increases. Conformal meta-analysis succeeds,

whereas HKSJ fails badly. On the other datasets
(see appendix), HKSJ sometimes drops below 80%
confidence. This deficiency is present at all settings
of effect noise, though it aggravates at higher values.
This simulation shows that conformal meta-analysis
has a rigorous coverage guarantee, and HKSJ does
not. It should be noted that HKSJ was developed to
improve the coverage guarantee of the more prevalent
Higgins-Thompson-Spiegelhalter method.

Simulation 3: This experiment compares differ-
ent instantiations of Algorithm 2: one with η = 0,
and the other with η = 0.4015, with α adjusted so
both ultimately seek a 90% confidence level. With
the higher setting of η, over-coverage is consistently
demonstrated. This suggests that the analysis of Sec-
tion 3.2 can be improved, at least in some settings.

Simulation 4: Our approach assumes that, in
many fields, it should be possible to develop good
priors from large volumes of untrusted data. How-
ever, if these priors are indeed very accurate, it is
unclear whether using KRR (upon just n trials) is
worth the complexity, and possible statistical over-
head, over just using the prior as a fixed predictor.
(This is conceptually equivalent to using a very large
ridge parameter λ). This simulation indicates there
is no such overhead: our fully-conformal intervals are
strictly superior to those derived from a fixed prior.
Thus, unless assumptions stronger than exchangeabil-
ity are used to derive prediction intervals, learning is
superior to mere validation.

5. Case Study: Amiodarone
Evaluating our approach on real meta-analytic data
is valuable, even if at limited scale due to the prac-
tical difficulties of collecting a large dataset. We
revisit the systematic review of Letelier et al. (2003),
which assessed the effectiveness of amiodarone for
atrial fibrillation (AF) patients. Its outcome mea-
sure is the relative risk of normal sinus rhythm; that
is, the probability of restoring normal rhythm when
administered amiodarone, divided by the probabil-
ity of restoration with placebo. The review involved
n = 21 trials, which we use as training data. For test
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Figure 2: Results of all simulations on a single exemplar dataset. See Appendix B.6 for congruent results on the
other datasets. The parameter “prior error” controls the distance between the true effects Y and the prior predictions
M ; zero prior error means M = Y . The parameter “effect noise” controls the size of the noise variances V ; zero
effect noise means V = 0. Their mathematical definitions are also presented in Appendix B.6. Overall, conformal
meta-analysis can deliver much tighter intervals than traditional methods (Simulation 1), even though traditional
methods have weak coverage guarantees (Simulation 2), whereas our algorithms, or their analyses, have (overly) strong
guarantees (Simulation 3). Our algorithms, not just good priors, are essential to this performance (Simulation 4).

data, we identify 4 trials that were published after
the review, but would have met its inclusion criteria
(Thomas et al., 2004; Kochiadakis et al., 2007; Balla
et al., 2011; Karaçağlar et al., 2019). Per Task 2, we
compare traditional meta-analysis (the Bayesian algo-
rithm of Theorem 11, described in Appendix A.6) with
conformal meta-analysis (Algorithm 1, with η = 1).

Our goal is not to make scientific claims about
amiodarone; that would require following a formal,
preregistered protocol. Though we temper our quan-
titative findings, depicted in Figure 3, we find them
qualitatively interesting. Conformal meta-analysis
manages to correctly predict all 4 trials, whereas tra-
ditional meta-analysis suffers a misprediction. This
is not statistically convincing, but it aligns with the
fact that conformal meta-analysis has a rigorous cov-
erage guarantee, whereas traditional algorithms do

not. (See Appendix A.6 for more details). Not all of
the conformal intervals overlap, but traditional inter-
vals all inherently overlap. This suggests conformal
meta-analysis can make predictions that are mean-
ingfully responsive to the details of trials, perhaps
distinguishing between effective and ineffective ones.

Appendix B.7 describes how we conducted the case
study, which differed from a typical meta-analysis.
The first change is training a prior on helpful data that
would otherwise be ignored. We identify 8 trials that
did not meet the inclusion criteria, since they were
not placebo controlled. To generate pseudo-effects for
these trials, we must estimate the placebo response,
and then subtract it from the amiodarone response.
This leads to the second major change, which is holisti-
cally including the perspectives of practitioners. The
critique of Slavik and Zed (2004), written by two

8
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Thomas et al. (2004)

Kochiadakis et al. (2007)

Balla et al. (2011)

Karacaglar et al. (2019)

Figure 3: Prediction intervals for new observed effects y (black dots) produced by traditional meta-analysis (light blue)
and conformal meta-analysis (magenta, thin). On average, they are comparable in width, but conformal meta-analysis
manages to cover the discrepant trial of Balla et al. (2011). Thus, the conformal intervals are more responsive and do
not sacrifice precision. The prior for conformal meta-analysis was produced post-hoc, having already seen the results
of Letelier et al. (2003). Thus, these intervals are not quantitative evidence, they are merely qualitative illustrations of
the behavior of conformal meta-analysis. Axes are intentionally omitted to deemphasize specific quantitative results.

doctors of pharmacy, gave estimates for the placebo
response on sinus rhythm (i.e. spontaneous conversion)
in different circumstances. We use these estimates
to generate the pseudo-effects. Finally, we use LLMs
(specifically, GPT-4 and Claude 3.5 Sonnet) to ex-
tract trial data, performing in-context parsing upon
published trial documents. In this manner, LLMs can
be used to aid meta-analysis, much as meta-analysis
serves as a question-answering system. This experi-
ence, and the paper overall, reflect positively on the
following dilemma: can language models be used to
rigorously answer scientific questions?

6. Conclusion
In their seminal paper on random-effects meta-
analysis, DerSimonian and Laird (1986) expressed
hope for resolving heterogeneity by using features x.
35 years later, Bryan et al. (2021) declared that such a
“heterogeneity revolution” had still not occurred. Con-
formal meta-analysis could help spark this revolution,
but much further research is warranted. Both our
algorithms and their analyses could be quantitatively
improved. It should be possible to further relax our
statistical assumptions, such as exchangeability (Bar-
ber et al., 2023; Gibbs and Candès, 2024). Collecting
larger meta-analysis datasets, and training priors on
larger volumes of untrusted data, would help further
validate our approach.
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Appendix A. Background

A.1. Outcomes and Effects

Let x ∈ X be features describing a trial. This con-
sists of the prospectively-set criteria of its population,
intervention, comparison, and measure of outcome,
commonly abbreviated as PICO (Richardson et al.,
1995). For example, x may include the duration of an
exercise program and the minimum age of its partici-
pants. It may also include auxiliary information that
was collected passively and retrospectively, though (as
described in the next section) this may complicate the
interpretation of the meta-analysis. x does not have
to be numerical; it can be, for example, a published
document describing a clinical trial. The number of
participants in such a trial should not be intentionally
encoded in x, since a treatment should be applicable
to any number of people. However, avoiding implicit,
unintentional correlations between trial design and
trial size may be difficult or impossible. Let ξ encode
factors which influence the treatment, but are neither
controlled nor observed. For example, the effect of
an exercise program may surreptitiously depend on
the altitude of the training facility or the jobs of the
participants.

In the Neyman-Rubin framework of potential out-
comes (Neyman, 1923; Rubin, 1974), for a single par-
ticipant denoted by ρ, ρ(1) ∈ R is the outcome when
assigned the treatment, and ρ(0) ∈ R is the outcome
when assigned the comparison. Each outcome may be
a final measurement (such as the amount of strength
gained after training), or its change from a baseline
measurement, or the logarithm of the ratio of final
to baseline. The difference ρ(1)− ρ(0) is the individ-
ual effect of the treatment. The potential outcomes
framework is challenging because we cannot observe
both terms in ρ(1) − ρ(0), since each participant is
assigned to either the treatment or the comparison.
The conditional average treatment effect (CATE), de-
noted by u, quantifies the expected difference between
the treatment and comparison for a new participant:

u(x, ξ) = Eρ (ρ(1)− ρ(0) | x, ξ) (2)

The CATE is usually defined solely in terms of the
observed variables x. We include ξ to emphasize the
influence of unobserved variables, which are sometimes
ignored in causal inference.

A.2. Different Goals of Meta-Analysis

The CATE is the predictive target of meta-analysis.
With high probability (typically 95%, with α = 0.05),
the CATE should lie within the predicted interval:

PC,x,ξ (u(x, ξ) ∈ C(x)) ≥ 1− α (3)

Rather than predicting relatively specific, tangible ef-
fects, meta-analysis often focuses on estimating more
abstract, harder-to-verify quantities. Meta-analyses
usually report a confidence interval CI ⊂ R which,
with high probability, should contain the average treat-
ment effect (ATE, also known as the summary effect
or grand mean):

PCI (ATE ∈ CI) ≥ 1− α where ATE = Ex,ξ u(x, ξ)

Whereas the confidence interval merely needs to cap-
ture the ATE, the prediction interval must capture
most of the dispersion around it. (Formally, a predic-
tion interval covers a random variable, and its coverage
probability must also account for the randomness of
that variable, whereas a confidence interval covers a
fixed value). In the presence of significant heterogene-
ity, the confidence interval is much tighter than the
prediction interval, and has little chance of capturing
the effect of a future treatment. Due to this potentially
unintuitive behavior, and the possibility of instilling
overconfidence in evidence about the treatment, many
prominent researchers strongly encourage systematic
reviews to report prediction intervals (IntHout et al.,
2016; Riley et al., 2011; Borenstein, 2024). According
to some researchers, the relative ease of corroborat-
ing (or refuting) predictions makes them essential for
scientific rigor and reproducibility (Billheimer, 2019).

These problems are exacerbated by the introduc-
tion of features (x) and larger numbers of trials (n),
as proposed in this paper. Since confidence intervals
are tighter than prediction intervals, it may be techni-
cally tempting to use untrusted priors to analogously
tighten intervals for ATE. However, when consider-
ing many trials with substantially different features,
ATE becomes a useless quantity (Simonsohn et al.,
2022; Subramanian et al., 2018; Gould, 2010; Fein-
stein, 1995). It is arguably misleading to use features
within a statistical analysis but to simultaneously ob-
fuscate their existence in the reported statistic. This
is why prediction intervals are presently the preferred
solution concept.

While prediction intervals avoid some of the unintu-
itive pitfalls of confidence intervals, it is important to
note that the predictive guarantee (3) has subtleties of
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its own. It is a mixed observational-causal guarantee:
coverage does not hold for all x, just marginally (on
average) over x. For example, if α = 0.05, then it is
possible for coverage to be 99% for patients younger
than 60 and only 80% for patients between 60 and 70,
so long as the average is at least 95%. This marginal
guarantee should not be confused with the follow-
ing, stronger conditional guarantee, which does not
average over x:

PC,ξ(u(x, ξ) ∈ C(x) | x) ≥ 1− α, for all x ∈ X

Achieving conditional coverage guarantees is not possi-
ble without further assumptions (Lei and Wasserman,
2014). Since prevalent meta-analysis algorithms do
not involve x, their guarantees are of course marginal
over x.

The guarantee (3) is most reliable when the distri-
bution over x is explicitly specified by a generative
model. If trial designs are actually chosen according to
this distribution, and x consists solely of prospectively-
set, controllable variables, then it is easy to sample
future x for which the coverage guarantee holds. If x
includes retrospectively-collected information, or the
trials are designed according to unspecified criteria,
then the guarantee becomes less meaningful.

A.3. Randomized Controlled Trials (RCTs)

An RCT enrolls m participants with potential out-
comes ρ1, . . . , ρm. Uniformly at random, it assigns m0

of them to group 0 (the comparison), and the remain-
ing m1 to group 1 (the treatment). Most RCTs do
not report individual outcomes. Rather, they report
the mean and (corrected) variance of the comparison
outcomes as y(0) and v(0). The same statistics are
reported for the treatment outcomes as y(1) and v(1).
These are combined into y, the difference in means,
and v, a sum of the squared standard errors (Deeks
and Higgins, 2010). These statistics are defined as:

y(g) =
1

mg

∑
i in group g

ρi(g) y = y(1) − y(0)

v(g) =
1

mg − 1

∑
i in group g

(ρi(g)− y(g))2 v =
v(0)

m0
+

v(1)

m1

Condensing the data into y and v has the following
rationale. It can be shown that y is an unbiased
estimate of the CATE:

E(y | x, ξ) = E(u | x, ξ)

Thus, as the RCT enrolls a very large number of par-
ticipants, y converges to u, regardless of x and ξ. This
is the primary reason why RCTs are so valuable. v is
an estimate of y’s variance around u, under conditions
discussed in the next section.

A.4. Random-Effects Model of the Data

Meta-analysis is conducted upon n trials, each with
data Xi ∈ X , Yi ∈ R and Vi > 0 for i = 1, . . . , n.
As discussed above, each trial’s Yi is centered around
Ui, but varies around it due to its limited number of
participants. Because Yi is a sample average, by the
central limit theorem, it is asymptotically normally
distributed around Ui. The random-effects model of
meta-analysis (DerSimonian and Laird, 1986; Higgins
et al., 2009) asserts, as a simplifying assumption, that
Yi is exactly (not just asymptotically) normally dis-
tributed around Ui with true variance equal to the
observed one. That is, Yi ∼ N(Ui, Vi). This can
be written in a way that highlights a key difference
between the standard random-effects model and this
paper’s model:

Yi(Xi, ξi) = ATE + Ui(Xi, ξi)−ATE︸ ︷︷ ︸
between-trial heterogeneity

+

+ N(0, Vi)︸ ︷︷ ︸
within-trial variation

(4)

The first and last terms are the same in both models.
The random-effects model asserts that the middle
term Ui −ATE ∼ N(0, ν) where ν (often denoted by
τ2) is called the heterogeneity variance. By contrast,
in this paper, Ui depends on the features Xi, and may
also involve arbitrary (non-Gaussian) noise through ξi.
Thus, this paper eliminates a normality assumption
which is viewed as dubious in practice (Liu et al.,
2023). The normality of within-trial variation, though
less controversial, may be tenuous for small trials
(Jackson and White, 2018).

A.5. Untrusted Data as a Probability
Distribution

Independently of RCTs, practitioners and researchers
often possess deep intuitions about the CATE. These
intuitions arise from the lower levels of the evidence hi-
erarchy: observational studies, individually-published
cases, hands-on experience, and personal belief (Mu-
rad et al., 2016). It is difficult to rigorously infer
causation from such untrusted (or “real-world” data,
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since they are observational and may have deeply-
embedded biases. Nonetheless, it is often found that
untrusted data agree with RCTs (Benson and Hartz,
2000; Concato et al., 2000). Retrospectively, Toews
et al. (2024) found the ratio of risk-ratios between
RCTs and observational studies to be approximately
1.08. The prospective RCT-DUPLICATE trial found
their Pearson correlation to be 0.82 (Wang et al.,
2023), with much of the discrepancy attributable to
readily-identified factors (Heyard et al., 2024). For
example, observational claims data do not typically
record whether treatment was initiated in a hospital,
but this may affect the outcomes of RCTs.

Since untrusted data originate from different kinds
of sources and experiences, they do not share the
form of RCTs. A modern approach to capturing large,
disparate collections of knowledge is to (pre)train
foundation models. Such models are already being
developed for healthcare (Moor et al., 2023; Singhal
et al., 2023; Tu et al., 2024). When applied to meta-
analysis, this approach would involve learning an em-
bedding φ(x) which maps features x into a Euclidean
space having inner product κ(x, x′) = φ(x)Tφ(x′).
On top of this embedding, a linear predictor of the
CATE could be trained as µ(x) = wTφ(x). Practi-
cally, this representation (µ, κ) encompasses nearly
every useful way of predicting the CATE. Math-
ematically, this representation constructs a Gaus-
sian process, a probability distribution over functions
f : X 7→ R, with higher probability placed on f
which could plausibly approximate the CATE (Kana-
gawa et al., 2018; Williams and Rasmussen, 2006).
In this probabilistic perspective, µ(x) = Eff(x) and
κ(x, x′) = Ef (f(x)− µ(x))(f(x′)− µ(x′)). Gaussian
processes are often used as prior probability distri-
butions in Bayesian inference (Gelman et al., 1995).
(See Section 2.1 for further comparison to Bayesian
inference).

A significant restriction is that µ and κ are fixed
relative to the data. In practical terms, this means the
outcomes of the trials are not reincorporated into the
prior. Otherwise, the trials could trivially, erroneously
serve as their own reality check. Thus, although µ and
κ are completely untrusted in terms of their veracity
and utility, their provenance (especially the data used
to generate them) must be clearly understood. Prac-
tices such as preregistration and data transparency
can facilitate this understanding (Munafò et al., 2017).
Importantly, this assumption is about the processes
used to include data, which are under our control. It
is not about the complex phenomena which generate

the data itself. In this sense, it is much weaker than
the assumptions of ignorability and positivity which
are made in causal inference.

The assumption of fixed µ and κ is technically
stronger than necessary. The following task descrip-
tion more precisely specifies the exchangeability re-
quirement which is required for our techniques to
apply.

Task 3 (Predicting Effects (Technical)) Let µ :
X → R and κ : X × X 7→ R. Let X̄ =
[X;x] ∈ Xn+1, Ū = [U ;u] ∈ Rn+1, V̄ = [V ; v] ∈
Rn+1

+ , M̄ = [µ(X̄i)]i, and K̄ = [κ(X̄i, X̄j)]i,j �
0 be random variables. Suppose, for any per-
mutation σ of {1, . . . , n + 1}, the joint distribu-
tion of the (X̄i, Ūi, V̄i, M̄i, [K̄i,j ]j) equals that of the
(X̄σ(i), Ūσ(i), V̄σ(i), M̄σ(i), [K̄σ(i),σ(j)]j). Let Yi = Ui +
Ei, where independently Ei|Vi ∼ N(0, Vi). From
(X̄, Y, V, M̄ , K̄), for a desired confidence level α ∈
(0, 1), produce an interval C(x) such that P(u ∈
C(x)) ≥ 1 − α, where the probability is over all the
random variables.

An advantage of this more technical formulation is
that its underlying exchangeability assumption can
be tested (Vovk, 2021). Thus, even when the prior
has unknown provenance, a diagnostic hypothesis test
can potentially check if its involvement in the meta-
analysis is valid.

A.6. Standard Meta-Analysis Algorithms

As previously mentioned, prevalent algorithms for
meta-analysis ignore the features x; in the parlance of
the field, they perform mean-effect prediction rather
than meta-regression. Thus, they simply return a sin-
gle prediction interval C ⊂ R rather than a prediction
band. Because the model (4) is not analytically solv-
able, there is no exact, rigorous frequentist prediction
interval. Instead, there are many different formulae
(Veroniki et al., 2019; Nagashima et al., 2021), each
involving approximations which hold only as n→∞.
Most of the prediction intervals have this form:

C = ÂTE± t

√
ν̂ + V̂ar(ÂTE) (5)

In this expression, the variance estimates ν̂ and
V̂ar(ÂTE) are usually algorithm-specific. More gener-
ally, t is the 1− α

2 quantile of a Student t distribution
with either n−1 or n−2 degrees of freedom. ÂTE is an
estimate of ATE, usually based upon inverse-variance
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weighting:

ÂTE =
∑
i

wiYi

/∑
i

wi where (6)

wi =
1

Vi + ν̂
for each i = 1, . . . , n

In practice, the most widely-used prediction interval
is based on the classical heterogeneity estimator ν̂
of DerSimonian and Laird (1986), and an estimator
V̂ar(ÂTE) proposed by Higgins et al. (2009). When n
is small, experimental evidence indicates this interval
is too small to satisfy (3) with the desired probability
1 − α. To the best of our knowledge, this method
does not have a proven coverage guarantee, so the
following result is stated imprecisely.

Proposition 9 (Classical Prediction Interval)
Assume the model (4) with Ui ∼ N(ATE, ν). Define
the following quantities within (5):

ν̂ =
Q− (n− 1)

S1 + S2/S1
V̂ar(ÂTE) = (

∑
i

wi)
2

Ȳ =

∑n
i=1 V

−1
i Yi∑n

i=1 V
−1
i

Q =

n∑
i=1

V −1
i (Yi − Ȳ )2

Sr =

n∑
i=1

V −r
i

Then C, as defined in (5), approximately satisfies (3)
as n→∞.

Partlett and Riley (2017) proposed an alternative pre-
diction interval based upon restricted maximum like-
lihood (REML) and Hartung-Knapp-Sidik-Jonkman
(HKSJ) estimators (Nagashima et al., 2021). REML
obtains ν̂ and ÂTE as the maximizers of a log-
likelihood function `(ν̂, ÂTE) which is filtered to re-
move influences from irrelevant variables (Viechtbauer,
2005). It is not concave, so it cannot be maximized by
standard algorithms. However, its stationary points
∂` / dν̂ = 0 (for fixed ÂTE) and ∂` / dÂTE = 0 (for
fixed ν̂) have closed-form expressions, so it is amenable
to alternating maximization. The following estimator
V̂ar(ÂTE) was developed independently by Hartung
and Knapp (2001) and Sidik and Jonkman (2003).
Cochrane Statistical Methods and other groups en-
dorse the use of HKSJ (IntHout et al., 2014; Veroniki,
2022; Veroniki et al., 2019). This method also does
not have a proven coverage guarantee.

Proposition 10 (HKSJ Prediction Interval)
Assume the model (4) with Ui ∼ N(ATE, ν). Initial-
ize ν̂ = 0. Alternate the updates to ÂTE and w in
(6) with the following update of ν̂, until a fixed point
is approximately reached:

ν̂ ←
∑n

i=1 w
2
i ((Yi − ÂTE)2 − Vi)∑n

i=1 w
2
i

+
1∑n

i=1 wi

V̂ar(ÂTE) =
n∑

i=1

(Yi − ÂTE)2wi

(n− 1)
∑

j wj

Then C, as defined in (5), approximately satisfies (3)
as n→∞.

In addition to these frequentist intervals, Bayesian
intervals for u can also be obtained (Smith et al.,
1995; Gelman et al., 1995). These begin with prior
distributions over ATE and ν. Improper (i.e. unnor-
malized) uniform priors are a default uninformative
choice (Röver, 2017). Using the random-effects model
as a likelihood, Bayes’ theorem obtains the posterior
distribution over ATE and ν, which induces a (nor-
mal) posterior distribution over u. From this posterior
distribution, a prediction interval for u can be derived.
Such intervals can be highly sensitive to the choice of
uninformative prior, which is partially why Bayesian
methods are less common in systematic reviews (Ham-
aguchi et al., 2021). Nonetheless, there are some
circumstances where the flexibility of Bayesian meth-
ods is desirable. For example, the Bayesian approach
can be extended to predicting trials. The posterior
distribution for future y ∼ N(u, v) is just u’s posterior
with v more variance.

Proposition 11 (Bayesian Trial Prediction)
Let the prior distribution over ATE be im-

proper uniform. Assume the likelihood (4) with
Ui |ATE, ν ∼ N(ATE, ν). Then, recalling (6), the
posterior predictive distribution conditioned on ν is
y | ν = ν̂ ∼ N

(
ÂTE, (

∑
i wi)

−1 + ν̂ + v
)

. (Röver,
2017)

A.7. The Ethics of Meta-Analysis

Healthcare is important, uncertain, and sometimes
controversial. Evidence-based medicine was intro-
duced to help resolve some of these issues, but it
involves controversy of its own. It unavoidably privi-
leges certain kinds of experiences and opinions over
others. This paper does not introduce these problems,
but it does operate in their midst. Let us examine how
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these problems could be ameliorated or aggravated by
our approach.

Currently, meta-analysis in evidence-based medicine
is highly exclusionary. The “lower levels” of the evi-
dence hierarchy are deprecated in favor of RCTs in an
effort to preserve rigor and eliminate bias. However,
this introduces some bias of its own. For example,
RCTs are expensive to conduct. Any methodology
that substantially prefers RCTs may be substantially
influenced by funding agencies and associated insti-
tutions (Lundh et al., 2017). Furthermore, RCTs are
not ethical to conduct in many situations (Morris
and Nelson, 2007). Conformal meta-analysis recog-
nizes that RCTs are especially valuable, but it holis-
tically incorporates data of less rarified origin. Even
when our methods do not lead to quantitative im-
provements, they are arguably more fair, inclusive,
and comprehensive. They could ameliorate concerns
that evidence-based medicine limits the autonomy of
healthcare professionals (Armstrong, 2007).

However, conformal meta-analysis introduces addi-
tional computational and statistical complexity into
the process of meta-analysis. This complexity could
be exploited by bad actors, with negative societal
consequences. For example, a malicious meta-analyst
could sneak trial data into their prior to arrive at in-
tentionally biased conclusions. To prevent such harms
from occurring, any rigorous conclusions derived from
conformal meta-analysis need to be accompanied by
safeguards on the handling of data.

Appendix B. Supplemental Material
B.1. Additional Related Work

Efficient algorithms for full conformal predic-
tion. In general, full conformal prediction is compu-
tationally intractable, requiring retraining at every
possible value of y. However, there are many special
cases in which the full conformal prediction set can
be efficiently computed. Nouretdinov et al. (2001)
and Burnaev and Nazarov (2016) describe fast algo-
rithms for (kernel) ridge regression. Similarly exploit-
ing piecewise linearity, Lei (2019) derives an algorithm
for `1-regularized regression, including the lasso and
elastic net. Homotopy and numerical continuation
techniques can approximate the prediction set for reg-
ularized and sparse generalized linear models (Ndiaye
and Takeuchi, 2019; Guha et al., 2023). Influence
functions and root-finding techniques can be similarly
employed (Martinez et al., 2023; Ndiaye and Takeuchi,

2023). Unlike these previous works, we seek a pre-
diction interval C(x, v) which isn’t merely easy to
compute, but is easy to mathematically analyze. In
particular, we need to analyze its width as a function
of v. Our simplifying idiocentricity condition is most
closely related to Corollary 3.5 of Lei (2019), which
describes when the elastic net’s prediction set is an
interval. Aside from the fact that this result applies
to a different algorithm, its condition does not match
ours, and does not lead to the same simplifications.

Meta-regression. A meta-regression fits the ob-
served effects Yi as a (typically linear) function of
the features Xi (Stanley and Jarrell, 1989). Meta-
regression is usually conducted to diagnose which
features are responsible for heterogeneity. It can also
generate useful hypotheses for future research, by iden-
tifying which features are associated with higher or
lower effects. While meta-regression and conformal-
meta-analysis are similar in form, there are a num-
ber of crucial differences. Most importantly, unlike
conformal-meta analysis, meta-regression does not
offer predictive guarantees for new x; the fit to the
data is post-hoc and interpretive (Baker et al., 2009;
Thompson and Higgins, 2002). The (non-predictive)
statistical task in meta-regression is to determine
which features have a statistically significant rela-
tionship with the effect (Huizenga et al., 2011). To
limit spurious findings, meta-regression is typically
performed on a small number of prespecified features.
By contrast, conformal meta-analysis fits powerful,
nonlinear models on a potentially large number of
features. In conformal meta-analysis, the regression,
as embodied by the prediction band C, is presented
as the main result, not just an adjunct diagnostic.

Individual treatment effects. This paper im-
proves predictions by tailoring them to specific patient
populations described by x. However, it still averages
over individuals within those populations. There are
multiple approaches to accounting for this heterogene-
ity by predicting individual treatment effects. One
approach is to perform n-of-1 trials, where a single
individual serves as both the treatment and control
by applying the treatment at different times (Guyatt
et al., 1986; Liang and Recht, 2023). Another ap-
proach is to conduct causal inference, under stronger
assumptions, on individual-level data from random-
ized and/or observational studies (Bica et al., 2021).
As part of this approach, conformal prediction has
been employed to obtain prediction intervals for po-
tential outcomes (Lei and Candès, 2021), possibly as
a function of a parameter Γ bounding the amount of
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unobserved confounding (Jin et al., 2023; Yin et al.,
2024). These approaches require individual-level data,
different experimental designs, or stronger assump-
tions, which are worth pursuing primarily when in-
dividual (within-trial) variation is significant relative
to between-trial variation. Whether this occurs de-
pends on the nature of the treatment as well as the
granularity of X .

Bayesian priors. Conformal meta-analysis takes
a prior probability distribution, along with trial data,
and makes predictions from a posterior distribution
— a process that mirrors Bayesian inference (Gelman
et al., 1995). The choice of prior can substantially
influence Bayesian inference, sometimes for the bet-
ter: for example, informative, data-driven priors for
the heterogeneity variance ν can mitigate excessive
posterior uncertainty (Rhodes et al., 2016; Lilienthal
et al., 2024). However, in a Bayesian meta-analysis,
the prior can potentially hurt the empirical coverage
of the reported intervals. As a simple example, even
if all the trial data indicate a large treatment effect, a
prior which heavily concentrates on zero effect would
nonetheless result in tight posterior intervals around
zero. Such behavior is inappropriate for systematic
reviews, which are meant to resolve collective uncer-
tainty among parties who do not necessarily share
the same prior beliefs. One attempt to address this
problem is to use uninformative priors. However, even
such choices can seriously impact the empirical va-
lidity of a Bayesian meta-analysis (Hamaguchi et al.,
2021). In conformal meta-analysis, by contrast, even
strong beliefs can be safely encoded into the prior
without breaking empirical coverage guarantees. In
the aforementioned example of a concentrated, incor-
rect prior, conformal meta-analysis would merely yield
loose intervals.

Uniform confidence bands. Prediction intervals
also should not be confused with uniform confidence
bands, which offer the following stronger guarantee,
and do not involve unobserved ξ:

PC (for all x ∈ X , u(x) ∈ C(x)) ≥ 1− α

Such bands have been developed for Gaussian process
regression in the context of online optimization, where
new points x are sequentially, adaptively chosen to
minimize uncertainty about u (Srinivas et al., 2009;
Chowdhury and Gopalan, 2017; Fiedler et al., 2021;
Neiswanger and Ramdas, 2021). Since subsequent x
are chosen adaptively using the band, it is essential
for the band to hold for arbitrary x rather than just
randomly-sampled x. Strictly speaking, these bands

are correct for arbitrary µ and κ. However, their
widths depend on the smoothness of u, as quantified
by its norm in the reproducing kernel Hilbert space
induced by κ. Since u is unknown, this quantity is
also unknown. As a practical matter, when µ and κ
can range from very good to very poor, the band is
either very wide or unknown. Though conformal meta-
analysis only offers prediction intervals with marginal
coverage guarantees, their width and coverage do not
depend on unknown quantities.

Utilizing unlabeled data. Trusted labels are gen-
erally considered a scarce resource in machine learning,
especially compared to unlabeled data (i.e. x sam-
pled from the marginal distribution of P). Unlabeled
data are commonly used to pretrain large foundation
models (Dahl et al., 2011; Dai and Le, 2015). Semi-
supervised learning studies how to rigorously use unla-
beled data to improve predictions (Balcan and Blum,
2010). Angelopoulos et al. (2023a) recently proposed
prediction-powered inference as an approach to safely
tighten confidence intervals by using unlabeled data
along with a prior derived from separate, untrusted
data. In this approach, (1) the unlabeled data and
prior (which is temporarily treated as correct) are used
to estimate the parameter, (2) concentration inequali-
ties are applied to bound the estimation error arising
from limited unlabeled data, and (3) the labeled data
are used to correct the estimation error due to inac-
curacy of the prior. Subsequently, Zrnic and Candès
(2024) proposed cross-prediction-powered inference,
which has similar goals but does not utilize untrusted
data. Instead, it splits the data (as in cross-validation)
to train a prior. Such methods have been used to im-
prove out-of-distribution causal inference (Demirel
et al., 2024). However, these methods are not directly
applicable to predictive meta-analysis, in which there
are no available unlabeled data. Furthermore, these
methods are designed to produce confidence intervals
rather than prediction intervals.

Safely using untrusted data. Various endeav-
ors in statistics and machine learning involve mak-
ing predictions that are rigorously guaranteed, even
though they use untrusted data. To some extent, all
these techniques manage to circumvent the “garbage-
in, garbage-out” principle. PAC-Bayesian general-
ization theory formalizes inductive bias as an (un-
trusted) prior probability distribution (Shawe-Taylor
and Williamson, 1997; McAllester, 1998; Seeger, 2002).
Its generalization bounds are tight when the prior and
data align, so that a learning algorithm (producing
a posterior distribution) can fit the data without di-
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verging far from the prior. While PAC-Bayes is a very
useful theoretical tool, conformal prediction bounds
are quantitatively tighter, especially when n is small.
In statistics, an untrusted prior distribution can be
used to define an e-value, a nonnegative statistic whose
mean is at most one (Neiswanger and Ramdas, 2021).
Using its reciprocal as an unnormalized density leads
to e-posteriors, which can be used as the basis for
valid inferences and decisions (Grünwald, 2023). To
derive confidence intervals with conditional coverage
guarantees, likelihood-free inference methods can ex-
ploit untrusted prior information (Masserano et al.,
2023). In computer science, algorithms can be infused
with untrusted predictions, also called side informa-
tion, advice, or hints (Mitzenmacher and Vassilvitskii,
2022). When the predictions are good, the algorithms
run faster; when the predictions are bad, the algo-
rithms retain acceptable worst-case performance. A
prototypical example is binary search, which can be
modified to run in O(1) time given a good prediction
of the target’s index, and in O(logn) time no matter
how bad the prediction was.

B.2. Computations for KRR

Let M and K be the mean and kernel function
applied to the training features:

M = [µ(X1), . . . , µ(Xn)]
T ∈ Rn

K = [κ(Xi, Xj)]1≤i,j≤n ∈ Rn×n

Given a parameter λ ∈ R and observations U ∈ Rn,
KRR learns the following posterior on the training
features:

M̂ = (K̂/λ)U + (K/λ+ I)−1M (7)

K̂ = λ(K + λI)−1K

In full conformal prediction, KRR is applied to the
training set (X,U) augmented by (x, u). We will use
bars to denote this augmentation, so X̄ = [X;x], Ū =
[U ;u]. Let m = µ(x), k = [κ(X1, x), . . . , κ(Xn, x)]

T ,
k0 = κ(x, x), and:

Ī =

[
I 0
0 1

]
K̄ =

[
K k
kT k0

]
Q̄ := (K̄ + λĪ)−1K̄ =

[
Q q
qT q0

]
Then, the augmented posterior mean is:

[
M̂
m̂

]
= Q̄

[
U
u

]
+

t̄︷ ︸︸ ︷
(K̄/λ+ Ī)−1

[
M
m

]

So the differences between the observations and pos-
terior means are:[

U − M̂
u− m̂

]
= (Ī − Q̄)

[
U
u

]
− t̄

=

[
(I −Q)U − qu
−qTU + (1− q0)u

]
− t̄

=

[
Au+B
au+ b

]

with the abbreviations:[
A
a

]
=

[
−q
1− q0

] [
B
b

]
=

[
I −Q
−qT

]
U − t̄

The augmented posterior kernel matrix is λQ̄. Thus,
Si =

√
λQii and s =

√
λq0. To determine Zi and z,

decompose the differences between the observations
and the posterior means. As before, denote augmen-
tation with overlines, as in Ē = [E ; ε].

[
Y − M̂
y − m̂

]
= (Ī − Q̄)(Ū + Ē − M̄)− z̄

=

[
U − M̂
u− m̂

]
− (Ī + Q̄)Ē

=

[
U − M̂
u− m̂

]
+

[
(I −Q)E − qε
−qTE + (1− q0)ε

]

Now, calculate the mean squared error with respect
to Ei ∼ N(0, Vi) and ε ∼ N(0, v):

E (Yi − M̂i)
2

= E (Ui − M̂i + (ei −Qi)
TE − qiε)

2

= (Ui − M̂i)
2 + E

(1−Qii)Ei −
∑
j 6=i

Qi,jEj − qiε

2

= (Ui − M̂i)
2 +

Zi︷ ︸︸ ︷
(1−Qii)

2Vi +
∑
j 6=i

Q2
i,jVj︸ ︷︷ ︸

Di

+ q2i︸︷︷︸
A2

i

v
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1 def theorem4(Y, V̅ , M̅ , K̅ , α, η, λ):

2 I̅ = eye(len(M̅ ))

3 t̅ = solve(K̅ /λ + I̅ , M̅ )

4 Q̅ = solve(K̅ +λ*I̅ , K̅ )

5 Q = Q̅ [:-1,:-1]

6 q = Q̅ [-1,:-1]

7 qₒ = Q̅ [-1,-1]

8

9 V, v = V̅ [:-1], V̅ [-1]

10 A = -q

11 a = 1-qₒ

12 B = Y - Q@Y - t̅ [:-1]

13 b = -q@Y - t̅ [-1]

14 # a is already positive; flip signs (wlog) so that a,A_i >= 0

15 B *= sign(A) + (A == 0)

16 A *= sign(A)

17 S2 = λ*diag(Q)

18 s2 = λ*qₒ

19 D = square(I-Q) @ V

20 d = square(q) @ V

21

22 a2A2 = a**2*S2 - A**2*s2

23 ρ = η*(D*s2 - d*S2 - a2A2*v)

24 G = (A*B*s2 -a*b*S2) / a2A2

25 H = sqrt(maximum(0, s2*S2*(A*b - a*B)**2 - ρ*a2A2)) / a2A2

26

27 return G, H

Algorithm 3: Python / NumPy code for common linear-algebraic computations described in Section 3. In this code,
and the code throughout the paper, some elisions and deoptimizations are made for readability. In particular, import
statements are omitted.

Similarly:

E (y − m̂)2 = E (u− m̂− qTE + (1− q0)ε)
2

= (u− m̂)2 +

z︷ ︸︸ ︷∑
j

q2jVj︸ ︷︷ ︸
d

+(1− q0)
2︸ ︷︷ ︸

a2

v

B.3. Proof of Theorem 6

Recalling Theorem 3 and the computations in Ap-
pendix B.2, we seek to prove:

|qi|√
Qii

<
|1− q0|√

q0
⇐⇒ |qi|√

Qii · q0
<
|1− q0|

q0

Since Q̄ is positive definite, its entries are the inner
products among some vectors f0, . . . , fn. In partic-
ular, qi = 〈fi, f0〉. Thus, by the Cauchy-Schwartz

inequality:

|qi| = |〈fi, f0〉|

≤ ||fi|| · ||f0|| =
√
||fi||2 · ||f0||2 =

√
Qii · q0

Thus, it suffices to show that 1 < 1−q0
q0

, that is, 0 <

q0 < 1
2 . Since Q̄ is positive definite, q0 > 0 is obvious.

To establish q0 < 1
2 , let us examine the constraints

on the last row of Q̄. By the original definition of Q̄,
taking just the last column of K̄:[

q
q0

]
= (K̄ + λĪ)−1

[
k
w

]
Expanding and multiplying by both sides:([

K k
kT k0

]
+ λĪ

)[
q
q0

]
=

[
k
k0

]

23



Meta-Analysis with Untrusted Data

Expanding again:[
K
kT

]
q +

[
k
k0

]
q0 + λ

[
q
q0

]
=

[
k
k0

]
This finally leads to the constraints:

(K + λI)q = (1− q0)k

kT q + λq0 = (1− q0)k0

Inverting the first equation to solve for q = (1 −
q0)(K + λI)−1k and plugging into the second yields:

(1− q0)k
T (K + λI)−1k + λq0 = (1− q0)k0

If we take λ = k0 then:

(1− q0)k
T (K + k0I)

−1k = (1− 2q0)k0
n∑

i=1

k̃2i
λi + k0

=
1− 2q0
1− q0

k0

The left hand side is positive, so in order for the right
hand to be positive, it is necessary that q0 < 1

2 , as
originally desired. To ensure λ (and KRR overall)
remain symmetric, this analysis must be applied to
any permutation of the data. Thus, λ should be larger
than any diagonal entry of K̄, not just k0.

B.4. Proof of Theorem 7

Theorem 1 guarantees that C(x, v) usually covers
y ∼ N(u, v). We will use this guarantee to derive
intervals C(x) that usually cover u. We don’t have
a v to plug into C(x, v), so we have to dig into how
C(x, v) works. The claim of Theorem 7 is that C(x, 0)
covers u just slightly less often than it covers y, so
long as the level of noise correction η is not too high.
This holds because of two counterbalancing properties
of C(x, v) that hold for all v ≥ 0.

The first property is that most of the spread of
|N(0, v)| can be shaved from the edges of C(x, v) with-
out losing too many u. This is possible because, in
meta-analysis, we care only about small α, ideally
around 0.05. Since C(x, v) covers y with high prob-
ability, there are only a few u closer than |N(0, v)|
to the ends of C(x, v) — otherwise, bad flips of the
noise could push too many y out of the interval, which
would violate the coverage guarantee of C(x, v). While
this logic indicates shaving is a conceptually feasible
strategy, it remains an abstract possibility, since we
don’t know v, and don’t know how much to shave. (It
should intuitively be O(

√
v), but constants matter).

The second property is that making η smaller limits
the growth of C(x, v). We mean this in a completely
formulaic sense — we have reasonably concrete ex-
pressions for the endpoints of C(x, v), and the follow-
ing Theorem 12 shows they widen by √ηv. When
η = 0, C(x, v) doesn’t depend on v at all. In other
words, when noise correction is disabled, C(x, 0) must
completely internalize the impact of noise, yielding
a relatively wide interval. Larger settings of η allow
C(x, v) to grow more with v, allowing (relatively) thin
intervals at small v. To concretely realize the shav-
ing strategy, we just need to set η small enough so
that, as a function of v, the shaveable region within
C(x, v) grows as fast as C(x, v) itself. This allows
us to obliviously use the baseline C(x, 0). The condi-
tional distribution v | x is arbitrary and unknown, but
any probability mass on v > 0 simply pushes more u
within C(x, 0).

The fact that C(x, v) grows proportionally to
√
v to

capture the noise is not only intuitive, it is necessary.
Most well-behaved learning algorithms should yield
conformal intervals which grow (on average) at roughly
this rate. Our ability to prove an exact growth rate,
in the next lemma, relies on the simplicity of full
conformal prediction for idiocentric linear smoothers.

Lemma 12 (Normal Interval Growth) Let
C(x, v) be the interval from Theorem 4. For all η ≥ 0
and v > 0, C(x, v) ⊆ C(x, 0)±√ηv.

Proof The interval for y depends on v only through
ρi:

1

η
ρi = Zis

2 − zS2
i = Dis

2 − dS2
i −

︷ ︸︸ ︷
((aSi)

2 − (Ais)
2
) v

Under idiocentricity, a/s > Ai/Si. Thus, the brack-
eted term above is positive, ρi decreases with v, the
square-root radius in Li (which subtracts ρi) increases
with v, and the denominator in Li is positive. Divid-
ing by the denominator, the radius Hi is of the form√
. . .+ ηv ≤ √. . .+√ηv. Neither the center Gi of Li

nor the other elided terms in the radius depend on v;
the √ηv term is the only one which involves v.

The rest of the proof of Theorem 7 doesn’t depend on
either idiocentricity or linear smoothers. Theorem 13
formalizes the first property described above: most u
are contained within C(x, v) by a margin that grows
with v. Finally, Theorem 14 shows that C(x, v) can
be shaved down to C(x, 0), with η determining the
loss in coverage of u.
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Figure 4: A high-level sketch of C(x, 0)’s coverage of u, when η is small enough (left) versus too large (right). The
gray dots are u, and its distributions conditioned on various v are shown. C(x, 0) is the dark green bar; as v increases,
C(x, v) increases by √

ηv, and that growth (in yellow) is shaved. The orange curves convey the spread of |N(0, v)|.
With good η (left), C(x, v) grows slowly compared to |N(0, v)|, which naturally pushes in the u (on average) as v
increases. Thus, C(x, 0) is wide enough to contain most of the u, no matter what v is. On the right, when η is large,
C(x, v) adapts more dynamically to v, so C(x, 0) is smaller. Too many u in the yellow region are shaved.

Lemma 13 (Pay For Room) Recall y = u+ ε for
ε ∼ N(0, v). Let w = [u − ε, u + ε], with possibly
unsorted endpoints. If P(y ∈ C(x, v)) ≥ 1 − α, then
P(w ⊆ C(x, v)) ≥ (1− 2α)/(1− α).

Proof Abbreviate C(x, v) = C. The key property
we repeatedly use is that y is one of the endpoints
of w chosen uniformly at random, conditionally in-
dependent of the other data. If w 6⊆ C, then either
both of its endpoints are not in C, or exactly one of
them isn’t. In the former case, y clearly isn’t in C; in
the latter, it isn’t with probability 1

2 . Let gray be the
event that exactly one of w’s endpoints is outside of
C. First, we prove that:

P(gray) ≤ 2α (8)

Let near denote both of w’s endpoints are in C, and far
that neither are in C, so that near, gray, far partition
the probability space. By total probability, and the
aforementioned reasoning about y:

P(y ∈ C)

= (1− P(gray)− P(far))P(y ∈ C | near)
+ P(far)P(y ∈ C | far) + P(gray)P(y ∈ C | gray)

= (1− P(gray)− P(far))(1) + P(far)(0) + P(gray)1
2

≤ 1− P(gray) + P(gray)1
2

Combining this with the assumption yields (8). Next:

P(y ∈ C | w 6⊆ C) = P(gray)P(y ∈ C | gray)

= P(gray)1
2

≤ α

With this inequality, the original claim follows from:

1− α

≤ P(y ∈ C)

= P(w ⊆ C, y ∈ C) + (1− P(w ⊆ C))P(y ∈ C | w 6⊆ C)

≤ P(w ⊆ C, y ∈ C) + (1− P(w ⊆ C))α

= P(w ⊆ C) + (1− P(w ⊆ C))α

Note this proof required ε to be symmetric, zero mean,
and conditionally independent given its variance v,
but not necessarily normally distributed.

Lemma 14 (Shaving) If P(w ⊆ C(x, v)) ≥ 1−2α
1−α ,

then P(u ∈ C(x, 0)) ≥ 1− α
(1−α)erfc

√
η/2

.

Proof Abbreviate C = C(x, v) and C̃ = C(x, 0).
For the first inequality of the following block, the
worst case is obtained when u is exactly one of the
endpoints of C̃ (say, the upper endpoint c̃+), since
that maximizes the distance from the endpoint of C
(say, c+), and therefore maximizes probability that w
will still remain within C.

P(w ⊆ C | u 6∈ C̃) ≤ P(c̃+ + |ε| ≤ c+)

= P(|ε| ≤ √ηv)

= erf
√

η

2

By total probability:
1− 2α

1− α

≤ P(w ⊆ C)

= P(u ∈ C̃)P(w ⊆ C | u ∈ C̃) + P(u 6∈ C̃)P(w ⊆ C | u 6∈ C̃)

≤ P(u ∈ C̃) + (1− P(u ∈ C̃))erf
√
η/2
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The desired claim follows from rearranging.

B.5. Predicting Clean Effects

If we had observed true effects U rather than noisy
Y , then straightforward conformal prediction would
yield a satisfactory interval for the true effect u.

Proposition 15 (Conformal Prediction) Let
(X1, U1), . . . , (Xn, Un), (x, u

∗) be exchangeable. Let
[R; r] be the residuals of a symmetric learning
algorithm upon the augmented data [X;x] and [U ;u].
Given any α ∈ (0, 1), let τ = d(1 − α)(n + 1)e.
Define the prediction interval as C(x) = {u :
r is among the τ smallest of R1, . . . , Rn}. Then
P(u∗ ∈ C(x)) ≥ 1− α. (Vovk et al., 2005)

Let C(x; Û) denote the prediction interval when Û
is given as training data. Suppose we know a set U
which contains the true U . If the outer interval Ĉ(x)

contains all C(x; Û) over U , then of course Ĉ(x) con-
tains C(x;U) and inherits its coverage. Theorem 16
shows the uncertainty over U falling in that plausible
set separates from fully-conformal KRR’s uncertainty
over u, given U . This is because E is independent
from all else, given V .

Lemma 16 (Cover All Possibilities) Let Ĉ(x)
contain all intervals induced by the ellipsoid E:

E =

{
E :

n∑
i=1

E2
i

Vi
≤ ρ

}
Ĉ(x) =

⋃
E∈E

C(x;U + E︸ ︷︷ ︸
Y

−E)

Let ρ > 0 be chosen so that PE(E ∈ E | V ) ≥ 1 − δ.
Then P(u ∈ Ĉ(x)) ≥ (1− α)(1− δ).

Proof Let C(x;U) = C(x) be the interval from Theo-
rem 15 when computed on the true U . In the following,
let rest denote X,U, x, u.

P(u ∈ Ĉ(x))

≥ P(u ∈ C(x), C(x) ⊆ Ĉ(x))

= EV Erest

(
1(u ∈ C(x)) · PE(C(x) ⊆ Ĉ(x) | V, rest)

)
≥ EV Erest (1(u ∈ C(x)) · (1− δ))

= (1− δ)Prest,V (u ∈ C(x))

≥ (1− δ)(1− α)

A sufficient condition for C(x;U) ⊆ Ĉ(x) is that E =
E for some E ∈ E, i.e. that E belongs to the ellipsoid.

Note that Ĉ(x) depends on U but this condition does
not. Thus:

PE(C(x) ⊆ Ĉ(x) | V, rest) ≥ PE(E ∈ E | V, rest)
= PE(E ∈ E | V )

≥ 1− δ

This lemma doesn’t make any smoothness assump-
tions on how C(x; Û) changes as Û varies away from
U ; it relies on the coverage of exactly C(x;U), but
not of any slight perturbation C(x; Û). Furthermore,
the lemma does not depend specifically on the normal
distribution of E , just that we know a set E which
captures it with probability 1− δ. For Gaussian noise,
this is an ellipsoid of appropriate scale. This proof
does not depend on the geometry of E, just the fact
that it contains E with high probability, and can be
computed from Y and V . Thus, this overall strategy
can be extended to handle non-Gaussian noise.

The previous lemma converts the statistical problem
of covering u into the purely computational problem of
determining the endpoints of Ĉ(x). When η = 0, and
if U is provided in lieue of Y , Algorithm 2 computes
the interval C(x) specified in Theorem 15. This allows
us to concretely bound the endpoints of Ĉ(x) as the
following two optimization problems:

min
E∈E

max{bottom n− τ + 1 lower ends of L1, . . . , Ln}

(9)
max
E∈E

min{top n− τ + 1 upper ends of L1, . . . , Ln}

(10)

Though this a nonconvex optimization problem, it
has useful structure. From Theorem 4, recall that
the endpoints equal Gi ±Hi, where Hi = |∆i|. We
are using η = 0, which implies ρi = 0, and in turn
simplifies the equations for these variables. Recalling
the equations from Appendix B.2 and Theorem 4,
the conformal idiocentric KRR equations are a set of
constraints in the variables B, b, Û and E, involving
constants a,A, s, S,Q, q, t̄, Y and V :

Gi =
AiBis

2 − abS2
i

(aSi)2 − (Ais)2
∆i = sSi

Aib− aBi

(aSi)2 − (Ais)2[
B
b

]
=

[
I −Q
−qT

]
Û − t̄ Û = Y − E

n∑
i=1

E2
i

Vi
≤ ρ

The four constraints on the left are linear. The
quadratic constraint is convex, since Vi > 0. Thus,
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the above constraints are convex. Thus, despite the
nonconvexity of the objective, the problems (9) and
(10) may be amenable to semidefinite programming
relaxations, robust optimization, and/or nonconvex
optimization. The full version of this paper investi-
gates this approach.

B.6. Simulation Details and Full Results

The simulations were performed using three partially-
synthetic biomedical datasets from the Penn Ma-
chine Learning Benchmark (Olson et al., 2017):
1196_BNG_pharynx, 1201_BNG_breastTumor, and
1193_BNG_lowbwt. We randomly subsample training
data (X,U) as well as test data (x, u). The kernel
matrix K is generated using either the Gaussian or
Laplace kernel as κ. For consistency across datasets
having different scales, a parameter effect noise > 0 is
introduced, and the distribution of V is constructed
to satisfy effect noise = E(Vi)

2/E|Ui|. Specifically
Vi ∼ Exp(1) ·

√
effect noise · E|Ui|. Similarly, to pro-

duce prior means M of varying quality, a parameter
prior error > 0 is introduced, and the distribution of
M satisfies MSE(M,U) = prior error · V(U). Further-
more, the difference between M and U should not be
purely random — otherwise, using KRR to explain
this difference would be hopeless. Instead, we gen-
erate a random offset function f̃(x) =

∑
i giκ(x̃i, x)

for random held-out data x̃i and gi ∼ N(0, 1). Since
f̃ is an RKHS element generated from random data,
there is some hope in approximating it using the
training data. Letting F̃ be f̃ applied to the train-
ing features, we generate M = pF̃ + (1− p)U where
p =

√
prior error · V(U)/MSE(U, F̃ ).

All simulations are averaged over 32 random splits.
Intervals are computed for between 256 and 768 test
data in each run. Due to the efficiency of our proposed
algorithms, all experiments are capable of running on
a free Google Colab instance.

B.7. Case Study Details

We follow the meta-analysis process illustrated in Fig-
ure 1. First, we determine the domain X of x. Help-
fully, Letelier et al. (2003) identified 10 potentially-
relevant features, such as mean age, mean AF du-
ration, and amiodarone therapy protocol (e.g. “IV,
5 mg/kg in 30 min + 10 mg/kg in 20 h” or “Oral,
600 mg/d for 3 wk”). In order to extract these fea-
tures from the trial, we give their published PDFs
to a publicly-available language model, along with a

prompt including example output. This extraction
is fairly reliable, echoing the experience of Yun et al.
(2024). Next, parsing code (also written by the lan-
guage model) converts the extracted textual features
to numerical vectors x. As exemplified in Figure 7,
this parsing can be tedious and error-prone, even with
a state-of-the-art LLM. Our final predictions involve
three additional extracted features: total amiodarone
dosage in the first 24 hours, whether mean AF dura-
tion was above or below 48 hours, and the number of
patients (which is a sensible feature when predicting
trials rather than effects).

In lieue of a powerful pretrained foundation model,
we base µ and κ on the critique of Slavik and Zed
(2004). They describe how multiple sources of het-
erogeneity, such as dosage, could impact the effect
of amiodarone. Most importantly, amiodarone has a
relatively slow course of action, whereas patients with
recent-onset AF (usually defined as an AF duration
of less than 48 hours) have a high chance of sponta-
neously reverting to normal sinus rhythm. (Letelier
et al. (2003) also noted this pattern). With recent-
onset AF, median spontaneous conversion rates are
“11% at 2 hours after admission, 18% at 3 hours, 25%
at 4 hours, 31% at 6 hours, 39% at 8 hours, 38% at
12 hours, 58% at 24 hours, and 67% at 48 hours.”.
This compares to only 0–8% within the first 72 hours
for patients with persistent AF. We identify 8 further
trials which compared amiodarone to an active com-
parison. We compute pseudo-effects (as relative risk)
by taking the ratio of the observed probability of con-
version under amiodarone, over the aforementioned
estimated probability of spontaneous conversion over
time. Such indirect comparison is reminiscent of how
network meta-analysis works (Cipriani et al., 2013).
We trained a ReLU deep network upon the relevant
features in these synthetically-labeled data.
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Simulation 1: Rows are different datasets; the different columns, from left to right, set prior error equal to 3.0, 0.9,
and 0.2, respectively. α = 0.1 and effect noise = 0.5 were used.
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Simulation 2: Rows are different datasets. n = 50 and n = 200 are used in the left and right columns, respectively.
prior error is set low to 0.2.
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Simulation 3: Rows are different datasets; n = 50 and n = 200 are used in the left and right columns, respectively.
α = 0.1 and prior error = 0.1 were used.
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Simulation 4: Rows are different datasets; n = 16 and n = 200 are used in the left and right columns, respectively. A
low effect noise = 0.02 was set, along with α = 0.1.
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Can you extract the following features

from the attached PDF paper? I gave

example values, from another paper,

which should be replaced with the

actual values in this paper. The only

relevant outcome is conversion to

normal sinus rhythm. Also, create a

new key like "Results": [a, b, c, d]

where a is the number of amiodarone

patients converted to sinus rhythm, b

is the total number of amiodarone

patients, c is the number of

comparison patients converted to sinus

rhythm, and d is the total number of

comparison patients. Answer as JSON.

{"Name": "Villani et al.11 (Italy)

2000", "Features": { "Amiodarone

Therapy Protocol": "Oral, 400 mg/d for

1 mo", "Comparison Treatment": "Oral

digoxin, 0.25 mg/d or oral diltiazem

hydrochloride 180- 360 mg/d for 1 mo",

"Time to Outcome Measure": "1 mo", "

Number of Amiodarone Patients": "44",

"Number of Control Patients": "30", "

Fraction with CV Disease": "47", "Mean

Left Atrium Size, mm": "50", "Mean AF

Duration": "17 wk", "Mean Age": "58",

"Fraction Male": "67", "Adequate

Concealment of Treatment": "No", "

Follow-up Fraction": "100", "Masked

Patients": "Yes", "Masked Caregiver":

"no", "Masked Assessor": "no" }}

Figure 5: Prompt used to extract relevant data from
trial PDFs.

In the attached JSON list, each

element represents a study described

by the "Features" attribute. Convert

these features to real numbers so they

can be provided to a learning

algorithm.

* amiodarone treatment should be the

total dosage, in milligrams, which is

given over the first 24 hours. If the

dosage is specified per kg bodyweight,

then take into account the average

bodyweight of the patients.

* comparison treatment should be

converted to [0,1], where 0 denotes

placebo and 1 an intensive, high dose

comparison regimen.

* if the fraction of male patients is

unknown, just assume it is 0.5.

* fraction with CV disease and

followup fraction were reported as

integers, so for example 78 should be

converted to 0.78.

* number of control and amiodarone

patients should be just copied over as

integers

* mean AF duration and time to outcome

measure should be converted to -1 for

<= 48 hours and 1 for > 48 hours

* mean left atrium size and mean age

should be rescaled to \[-1,1\] where 0

is the average of the feature, -1 is

the minimum, and 1 is the maximum

* the boolean features should be

rescaled to \[-1, 1\], where -1 means

false, 1 means true, and 0 means not

present or not confident.

* include the same keys for all the

studies, using the original key names.

Answer as JSON; no further explanation

is necessary.

Figure 6: Prompt used to convert extracted data to
numerical features.
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1 def parse_dosing_protocol(protocol):

2 if protocol is None or protocol.lower() == 'not specified':

3 return 0

4
5 weight = 70 # Average body weight in kg

6 total_mg = 0 # Initialize total milligrams

7
8 # Normalize and break down the protocol into components

9 protocol = protocol.lower().replace('over', 'in').replace('plus', ',')

10 phases = protocol.split('+')

11
12 for phase in phases:

13 parts = phase.split(',')

14 for part in parts:

15 part = part.strip()

16 tokens = part.split()

17 dose = 0

18 rate_based = False

19 duration = 24 # Default duration is 24 hours unless specified

20
21 # Parse the dose and units

22 for i, token in enumerate(tokens):

23 try:

24 # Attempt to convert token to float to find numeric values

25 potential_dose = float(token)

26
27 # Check for units immediately following the numeric value

28 if i + 1 < len(tokens):

29 unit = tokens[i + 1]

30 if 'g' in unit and 'mg' not in unit:

31 potential_dose *= 1000 # Convert grams to milligrams

32 elif 'mg/kg' in unit:

33 potential_dose *= weight # Convert to total mg for given weight

34
35 # Determine if the dose is time-bound

36 if 'hour' in unit or 'h' in unit or 'min' in unit:

37 rate_based = True # The dose is a rate per time

38 duration = extract_duration(part)

39 if 'min' in unit:

40 duration /= 60 # Convert minutes to hours

41 dose = potential_dose

42 break

43 except ValueError:

44 continue # Not a number, move to next token

45
46 # Apply the dose calculation based on the duration and whether it's rate-based

47 if rate_based:

48 total_mg += min(duration, 24) * dose # Apply the rate up to 24 hours

49 elif 'day' in part:

50 if 'first' in part or '1 day' in part or '1 week' in part:

51 total_mg += dose # Apply if it specifies the first day or week

52 else:

53 total_mg += dose # Single dose or calculated for the duration

54
55 return total_mg

Figure 7: Python code generated by GPT-4 to parse and convert amiodarone therapy protocols. Generating this
code required multiple rounds of interaction with the language model. This code still has mild bugs, which are left
untouched to accurately convey contemporary expectations about in-context parsing.
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