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Abstract

Upgrading a linear classifier to a nonlinear one leads to statistical or computational com-
promise. For example, lifting its dimension, as in kernel methods, may lead to overfitting.
Nonconvex optimization algorithms, used for (deep) neural networks or decision trees, may
not obtain high-quality solutions or even converge. Similarly, boosting can get stuck on
increasingly difficult subproblems. We avoid concerns about overfitting and convergence
with new nonlinear classifiers — smooth lists of halfspaces — and a new learning algorithm
— the sequence of averages. Smooth lists have unbounded depth, yet do not need more data,
in the worst case, than single linear classifiers. Theory suggests the algorithm never gets
prematurely stuck and monotonically improves the classifier. In experiments inspired by
challenging problems in computational learning theory, it performs well when only a moder-
ate amount of data and time are available, and there is non-trivial noise or inconsistency.
At a high level, we isolate a kind of deep learning which is easier to reason about but retains
some of the advantages of depth.

1. Introduction

A classifier takes an input x and outputs a binary value in {—1,1}. Supervised learning
is the task of looking at data of the form “input: z, output: y” and choosing a classifier
¢ which, given a new input, returns a (typically) correct output. We hope to complete
this task using as little time and data as possible. The data are randomly, independently
generated by an unknown probability distribution D. We wish to maximize the correlation
of the classifier ¢ with D (i.e., minimize the error probability):

X = B (elah) =1-2 P (c(a) #) 1)
Linear classifiers, defined by vectors w € R", operate upon inputs x € R™ only via an inner
product (w,x) = > ; w;z;. The archetypal linear classifier is a halfspace, which returns —1
or 1 according to the sign of the inner product: sgn({w,z)). Linear classifiers are convenient,
but they may not be expressive enough to achieve high correlation. Even if a good one exists,
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finding it may be computationally intractable due to noise (Feldman et al., 2009; Zhang
et al., 2015). In limited scenarios — e.g. if the inputs have logconcave distribution and the
noise probability is bounded — modern algorithms manage to learn a good linear classifier
(Awasthi et al., 2016; Zhang et al., 2015, 2017). Nonetheless, the prevalent approach to
fitting more complicated data or avoiding computational intractability is to use nonlinear
classifiers; this is called ‘improper learning’ when linear classifiers are kept as a competitive
baseline. Unfortunately, it leads to two new concerns: overfitting and reliable convergence.

Lifting (as in kernel SVM and polynomial regression) increases the dimension of the
linear classifier by mapping each input x to a a feature vector ¢(x) in a reproducing kernel
Hilbert space, and minimizing a convex objective thereof. Such algorithms can be robust to
arbitrary noise, and in some scenarios, are provably the only such methods (Kalai et al.,
2008; Daniely, 2014; Dachman-Soled et al., 2014). Solutions to the convex optimization may
be simply characterized and reliably found. However, lifting may require substantially more
data (Bun and Steinke, 2015; Poggio et al.; Daniely et al., 2012). This tradeoff is witnessed
in practice and illustrated by experiments in this paper.

Composition (as in decision trees or deep neural networks) produces expressive and
succinct classifiers. Some decision tree algorithms achieve optimal error rate asymptotically
as the amount of data increases (Scott and Nowak, 2006); however, they may need much
more data as the dimension grows (Bengio et al., 2010). Characterizing the data needs
of neural networks is a complex, open question. Neural networks are extremely capable
of overfitting, but typically don’t due to some benign and poorly understood properties of
natural data (Zhang et al., 2016; Karolina Dziugaite and Roy, 2017). Because learning deep
classifiers typically involves nonconvex optimization, it is difficult to analyze the convergence
behavior of the learning algorithm, or guarantee the quality of the resultant classifier. In
some scenarios, local minima may be satisfactory (Kawaguchi, 2016; Soltanolkotabi et al.,
2017), but avoiding saddle points still requires care (Du et al., 2017; Jin et al., 2017). Even
as we improve our understanding of deep classifiers in general, we seek an analytically simple
subset which retains some of the advantages of depth. Indeed, prior analysis restricts the
architecture of the network, the activation functions, the eigenvalues of saddle points, etc.

Boosting algorithms (such as AdaBoost) produce convex or linear combinations (‘ensem-
bles’) by iteratively (1) reweighting the data so the current ensemble has low correlation,
(2) finding a classifier at least weakly correlated with the reweighted data, (3) adding this
new classifier to the ensemble. Weak learning in (2) is left for a separate algorithm to
perform. The amount of data required by an ensemble can be controlled (Koltchinskii et al.,
2003). Many boosting algorithms may be understood as convex optimization over ensembles,
which is not robust to noise (Long and Servedio, 2010). By introducing nonconvexity, these
algorithms become robust but computationally intractable (Freund, 2001; Hanbo Li and
Bradic, 2015). ‘Smooth’ boosting limits the amount of reweighting; with a carefully chosen
weak learner, such algorithms are robust to limited amounts of noise (Servedio, 2003; Klivans
et al., 2009). General-purpose boosting algorithms merely assume that weak learning is
always possible (Ben-David et al., 2001; Kanade and Kalai, 2009; Chen et al., 2015). This
assumption is equivalent to a kind of linear separability, which is typically thought of as
“non-realistic” (Shalev-Shwartz and Singer, 2010). In summary, boosting may be stymied by
noise or may get stuck on insoluble subproblems.
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Figure 1: The learning algorithm (left) operates upon data {z;,y;}/", for T iterations, and
computes a sequence of averages. It uses a sequence of positive step sizes {f;}1_;. On each
iteration, it computes, rescales (by Euclidean norm ||-||), and stores the average of all the
data. It reduces the weight of data having high inner product with the average. The weight
reduction corresponds to a passing probability in the smooth list of halfspaces (right), which
operates upon an input x. A stored average w; is used to classify an input if they have high
inner product; otherwise, the input is passed to the next average.

1.1 Our contributions

This paper revisits the following basic questions.

What classifiers should the algorithm return? Smooth lists of halfspaces are a novel
generalization of halfspaces. They involve a sequence of halfspaces, each employed with
probability depending on its confidence on the input; see section 2 for their definition. They
are more flexible than halfspaces due to their unbounded depth; see figure 3 for an illustration
of a complicated, nonlinear function which they can (weakly) fit.

How should the algorithm fit such a classifier to the data? The sequence of averages
(SoA) is a hybrid formulation of learning as iterative optimization. It never revises previously
added elements, much as decision trees are recursively constructed. A step size smoothly
limits the modification of the list through the probability that the element is invoked, much
as gradient descent smoothly updates parameters.

Our classifier and learning algorithm (defined in figure 1) blunt the compromises of
improper learning. Even though smooth lists of halfspaces have unbounded depth, they do
not require more data to learn (in the worst case) than halfspaces. That is, an amount of
data large enough to bind together the training and true correlations of every n-dimensional
halfspace also suffices for smooth lists of halfspaces.

Theorem 1 Let the input distribution be absolutely continuous with respect to Lebesgue
measure, and let F be all n-dimensional smooth lists. Esupscr (x(f) — X(f)) < € with

m = O(n/e?) data,.

Since smooth lists strictly generalize halfspaces, this bound is tight. The following bound is
more appropriate when the dimension n is large compared to the number of iterations, or
the size of the steps therein.

Theorem 2 Let D be supported on the unit ball, and let Fg be all smooth lists defined
by vectors wy,...,wp satisfying Z?:l lwel] < B. Esupser, (x(f) = X(f)) < € withm =
O(B?/€%) data.
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These theorems are reminiscent of previous results, which bound the additional complexity
of later classifiers by the probability of actually reaching them (DeSalvo et al., 2015).

Because SoA is so simple, it may be expressed as a concrete (albeit nonsmooth) dynamical
system (section 3). This yields insight about its convergence. Notice that, once the smooth
list returns with probability 1 for every input, appending new elements has no effect. Such
convergence occurs when every y; is shrunk to zero by line 4 of SoA. It is not evident that
SoA converges; it may ‘get stuck’ at iteration ¢ if w; = 0 yet y; > 0 for some i. It is easy to
see (in section 3) that, when m > n, there are infinitely many points at which this may occur.
Such sticking points are analogous to pathological distributions in boosting. Fortunately
(under reasonable smoothness conditions) SoA never leads to such points.

Theorem 3 Let the input distribution be absolutely continuous with respect to Lebesgue
measure, and scale the training inputs to have unit norm. In the training algorithm, replace
the (nonsmooth) absolute value function with a smooth e-approzimation z, as defined in (4).
Run the training algorithm for T iterations with any constant step size 8 > 0. As e — 0 and
T — oo, y — 0 with probability 1 over the randomness of the training data.

By analyzing an (arbitrarily minor) smoothing of SoA, we can apply powerful tools from
dynamical systems which have also recently been applied to nonconvex optimization (Lee
et al., 2016).

In experiments, SoA fulfills the original purpose of nonlinear classification: to quickly
fit complicated, possibly noisy data. These experiments involve some of the most intensely
studied, yet elusively challenging, problems in computational learning theory. Overall, it
seems SoA achieves a better tradeoff among time, data, and robustness, in a restricted but
significant regime: where only a moderate amount of time and data are available, yet the
classifier must tolerate a non-trivial amount of inconsistent data.

2. Smooth lists of halfspaces

Begin by approximating the sign function sgn(-) with a differentiable sigmoid function of
slope at most 3. This paper uses a sigmoid derived from the CDF of the Laplace distribution:

l—e P >0 [P(a)] =1 - e~ Plal
via) = —1+ P otherwise Y (a) = Be Plal = B(1 — |¢(a)))
This function is numerically stable and twice differentiable. Despite its simplicity and
numerical appeal, the Laplace sigmoid is rare in machine learning literature; (Clevert et al.,
2015) uses it for negative inputs, and a linear function for positive inputs. Applying such an
approximation to halfspaces yields smooth halfspaces:

H = {hw(z) = Y((w,2)) : w € R"}

The magnitude of the real-valued output, within [—1, 1], can be used as a probability for a
randomized classifier which operates as follows: “with probability |h,,(x)|, return sgn({w, z)).
Otherwise guess —1 or 1 uniformly at random.” The correlation of h,, equals the expected
correlation of this randomized classifier. As 8 — oo, a halfspace is recovered, which we will
denote as hogy-
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Figure 2: With the same Figure 3: Points on two intertwined logarithmic spirals
maximum slope 8 = 6, the (left) of the form r = €. For visual clarity, the radii
Laplace sigmoid ( in black) are plotted logarithmically. The best halfspace (middle)
and the logistic sigmoid achieves correlation = 0.07 from a negligible imbalance
(dashed).  The former’s in the sampling of points. By contrast, a smooth list
singly-exponential tail is al- (right) achieves ~ 0.27; lower opacity denotes lower
gebraically useful for prov- return probability. Intuitively, outer rungs are expo-
ing the convergence of the nentially farther from the origin than the inner ones.
algorithm in theorem 3. The smooth list can correctly classify the former with

reasonable return probability, while essentially ignoring
the latter. It then recurses on closer ‘flipped’ rungs.

A smooth list of halfspaces, defined by a list of vectors wy, ..., wp, operates as described
on the right side of figure 1. It is a randomized classifier which has the same correlation as
the following real-valued, recursively-defined function:

Jo(z) =0
Jwrrwr (%) = By () + (1 = [hay (2)]) fs,..owr (%)

Clearly a smooth halfspace is a smooth list of length 1. Interestingly, the smooth halfspace
defined by w can be decomposed into an arbitrary-length smooth list of halfspaces defined
by scalings of w; the short proof is in the appendix.

Theorem 4 hy, = fg,w,.. grw for any B1,..., Br satisfying B; > 0 and Zthl B =1.

Smooth lists are related to previously proposed classifiers. For example, decision lists (Rivest,
1987) operate as follows: “For ¢t =1,...,T: if the deterministic function m(x) = 1, return
the fixed value vy € [—-1,1]. Return 1 at the end of the list.” Decision lists are more
expressive than smooth lists. For example, if m; are halfspaces, decision lists are intersections
of halfspaces, which cannot be represented as smooth lists. However, the complexity of
decision lists grows with their length, which discourages appending many elements, and
thereby constrains the algorithm. (This difficulty was partially overcome by the notable
algorithm of Blum et al. (1998), as described in section 3.) As theorems 1 and 2 prove, the
complexity of a smooth list is independent of its length.

If each vy = —1, then a decision list is called a cascade of classifiers (Viola and Jones,
2001). These can be fast to evaluate in applications with imbalanced outputs, such as
computer vision: obvious inputs are classified early, and further processing is reserved for the
occasional output 1. Smooth lists behave similarly, even without imbalanced outputs: inputs
far from decision boundaries tend to be classified earlier. However, we focus on the resources
needed to train smooth lists, not evaluate them. If each vy > 0 and v; > vy > ... v, then a
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decision list is called a falling rule list (Wang and Rudin, 2015). These are easily interpretable
for a similar reason: obviously-true inputs must be classified early. Smooth lists may also be
easily interpreted, since they tend to classify extreme inputs early. However, we focus on
the algorithmic benefits of smooth lists, not their interpretability.

Smooth lists are reminiscent of other functions besides classifiers. Feedforward neural
networks also involve a composition of linear functions and nonlinear activation functions.
They typically transform the input x to another vector 2’. For example, each layer of a
cascade correlation network (Fahlman and Lebiere, 1990) computes a nonlinear function
of the previous layer and copies through the input. Smooth lists lack the latter ‘skip
connections’, in the parlance of modern deep learning (He et al., 2016). Smooth lists are
more comparable to the final classification layer of a neural network, which is typically a
linear classifier learned by relaxation. In general, hypotheses are often averaged according
to a fixed probability distribution. Such combinations are called ensembles. Smooth lists
are not ensembles, since the distribution of which classifier returns depends on the input .

The statistical properties of smooth lists are different than previously proposed nonlinear
classifiers, as the following sections describe.

2.1 On ‘nice’ data, smooth lists need more data than halfspaces

Since the distribution D is unknown, learning is performed on a sample of m data. This
defines a training distribution D and a training correlation x:

1 m
x,y = Z c(x (2)

This section upper bounds the amount of data needed to ensure the training and true
correlations are close for smooth lists of halfspaces. The standard approach, for any
hypothesis class F, is to bound the Rademacher complexity: the maximum correlation, over
F, with m uniformly random outputs o1, ...,0, on m inputs z1, ..., x,;, drawn from D.

R(F) = E (sup — Zf x;)0. Z>

L1y, Ty ~D cFmMm
0'1a~--»0'm’\‘{_171} !

It seems the Rademacher complexity of smooth lists of halfspaces exceeds that of halfspaces
when D is normally distributed. Figure 4 shows experimental evidence.

2.2 On worst-case data, smooth lists don’t need more data than halfspaces

In most scenarios, however, D is not known, and one resorts to ‘distribution-independent’
bounds which hold over a family of D. As reviewed in the appendix, the Rademacher
complexity of smooth halfspaces R(#) may be bounded independently of the dimension or
distribution of the inputs.

Theorem 5 If ||z|| < 1, then for any B > 0, supp R(H) < Rp := B+/2/m (Kakade et al.,
2008 Theorem 1 and Example 3.1.1).

Theorem 2 is a straightforward consequence of the following.
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Figure 4: Estimated Rademacher complexities of halfspaces and thresholded smooth lists.
Each histogram consists of 150 samples of the following process: r random classifiers of
each kind are generated, m standard normal inputs in 128 dimensions are sampled, random
outputs are assigned, and the maximum correlation obtained by each set of classifiers is
returned; larger correlation is plotted further right. The rows increase r from 250 (top) to
25000 (bottom). The columns increase m from 32 (left) to 15336 (right). Since the 2nd and
3rd rows are similar, increasing r further should have no effect. For small m, the smooth
lists achieve substantially higher correlation (i.e. demonstrate more potential for overfitting);
this persists as m increases. All of these estimated Rademacher complexities are far below
the worst-case bounds.

Theorem 6 Under the conditions of theorem 2, R(Fg) < Rg.

Theorem 1 is analogously based on the distribution-independent Vapnik-Chervonenkis bound
for halfspaces, which are denoted by haoq for normal vector w.

Theorem 7 If m = O(n/€?), then supp E (sup,, X(hoow) — X(hoow)) < € (Boucheron
D~D
et al., 2005, Theorem 3.4).

The proofs of these results are in the appendix. The high-level insight is that an early
element of the smooth list (say, w;) interacts with a later element (say, wy) only through
the conditional distribution over inputs which it passes to wa. The correlation of h,,, on the
conditional distribution is handled by the distribution-independent bound:

wp B (supx(0a) = 1) ) <500 B (509 3(0s) = 0 )

wy D|wi passes \ wy Dy D2 \ wo

We can apply the bound separately for each element without introducing dependence on 7'
because the sum of norms is at most 8 (for theorem 2) or the total return probability is at
most 1 (for theorem 1). Due to the previous section, it is not surprising that these proofs
depend critically on distribution-independent bounds.

3. The sequence of averages

The algorithm (fig. 1) trains smooth lists the same way they are used. It appends a vector to
the list, reweights the data by the probability they would pass to the next vector, and repeats.
The reweighting in line 4 is superficially similar to AdaBoost or multiplicative weights, which
are based on the (signed) margin: y; e~ (weTi)Vi  Their reweighting is sensitive to noise: if
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|{(wy, x;)| is large, flipping the sign of y; affects the reweighting substantially more than a
linear classifier’s correlation. By contrast, line 4 depends on the confidence |[(wy, z;)| of w;
on x; — not whether it was correctly classified. This helps explain the robustness observed
in section 4.

Furthermore, parts of this algorithm are reminiscent of previous ones designed to resist
noise. The algorithm of Klivans et al. (2009) computes the same average vector w; at each
iteration. However, it forms a combination of halfspaces via boosting rather than a smooth
list. The algorithm of Blum et al. (1998) produces a decision list (as defined in section 2) of
halfspaces defined by vectors wy, ..., wp. It returns sgn((wy,x)) if |(wy, z)| is larger than
some threshold, and otherwise proceeds to the next element. It trains each halfspace with
the perceptron algorithm on a subset of the data which would have (on average) large margin;
it passes the remaining data to subsequent steps. By contrast, we smooth the ‘return’ event
and pick a vector according to a simpler criterion.

Our algorithm may be viewed a sequence of locally optimal decisions of arbitrarily small
impact. The training correlation, at iteration T', of the smooth halfspace h,, is:

1
EZ xz H ’lUf .’IJ@ Dyz

Each average w; is instantaneously optimal, assuming it is nonzero: for some 8 > 0, versus
any competing direction v scaled to the same norm B¢, X(fw,,...w:) > X(fw:,.. ). This is
because the average is the derivative of the correlation at the origin:

: — B fov((way)

—x(h

de( w)
Since w; is the direction of instantaneous steepest ascent, by continuity, it maintains
some advantage over all competing directions for some length. We can choose 5; > 0 so
that X¢(hy,) > 0 for all ¢. This makes the algorithm monotonically improving in that

X(fea1) > X(fe)-

Rather than explicitly computing the averages w; by manipulating the inputs, it is
possible to directly solve for the inner products used to classify and reweight data, in terms
of the kernel matrix K;; = L (z;,2;). Let the norm of the sum be G = ||, z; - yil|, g the
unit vector in that direction, and ||y||, the kernel seminorm:

(Ky)i=>_ Kijy
j
= <Z yixi,zijj> Zyzyg =y Ky =|lyllk
i J
vaxz = <Zy]xj,xz> = ZyjKi,j = (Ky)@
j

(g, 2i) = (Gg, i) |G = (Ky)i/ |yl x

The dual update to y is a continuous function «:

yi — aly) = e Py, — o= BUKYL/lllicy, (3)

X'(0) = =E (¢'((w,2))z-y)|,_, =E(zy)
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As a convention, multiply the sign of y; into x;, so each y; is initially 1. This does not affect
the correlation of any linear classifier, nor the convergence of y to 0.

3.1 Convergence

This section outlines why smoothed SoA converges, per theorem 3; details appear in
section 6.5 y is initially the all-ones vector; each component decreases monotonically and
must remain nonnegative. So, y converges to some vector, and that vector must be
nonnegative. If y converges to anything, we must have a(y) = y by continuity, i.e., we must
be at a fixed point. We say ¢ is stuck if it is a nonzero fixed point. Equivalently:

Definition 8 § is called a stuck point if ||g||, =0 but g # 0.

Let ¢ be a smooth map that closely approximates o and shares the exact same stuck points
y. Unlike «, ¢ is a diffeomorphism locally at . Using the stable manifold theorem, we show
the ‘bad’ manifold, which contains nearby points that converge to ¢, is null (has measure
zero). Its preimage is also null; iterating, the corresponding ‘bad’ initializations are null.
The only remaining possibility is convergence to 0.

The strategy of the proof is similar to that of (Lee et al., 2016), but the technical details
differ considerably. Their map is smooth and has a well-defined inverse over R™, which allows
immediate application of the stable manifold theorem. By contrast, even after smoothing «
to ¢, it isn’t invertible, so we identify the most general conditions which enable the ‘iterated
preimage’ strategy. Finally, we must handle some technical complications relating to strictly
positive y and uncountably many 7.

I denotes the set of initial points which converge to ¢, also known as the basin of
attraction of .

~ _ m' . t o~
I(y)—{yoeR -tlggoa(yo)—y}

It is easier to analyze convergence of smooth maps, so we approximate the absolute value
function with a smooth function parametrized by L > 0:

2(a) = %log (; (el 4 eLa)> (4)

For all a € R, this function satisfies z(a) < |a| < z(a) +  log2. Accordingly define a smooth
analogue of a.

Lemma 9 Smoothness: for all L > 0,
(where o denotes entrywise product) is continuously differentiable.

(The lemmas in this section are proved in the appendix.) Let Iy replace o with ¢ in the
definition of I. The singular points of ¢ determine if the preimage of any null set is null.
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Theorem 10 For continuously differentiable ¢, the set of singular points
S ={y:¢'(y) is not invertible}

is null iff the preimage {yo : ¢ (yo) € Z} of every null set Z is null. (Ponomarev, 1987,
theorem 1).

The following result validates the proof strategy.
Lemma 11 Almost diffeomorphism: for all L > 0, S is null.

Outside of S, for sufficiently large L, ¢ is a C'' local diffeomorphism: within some ball B
around y, ¢(Y') is open, and ¢ : B — ¢(B) is continuously differentiable, invertible with a
continuously differentiable inverse (by the inverse function theorem, since ¢’ is invertible),
and bijective (since the inverse is defined at every ¢(y)). The next lemma shows all of the
stuck points are outside of S. Its proof involves a slight technical complication related to
strict positivity of y.

Lemma 12 Local diffeomorphism: for each strictly positive stuck point ¢, there is an
Lo(g) > 0 such that for all L > Lo, ¢'(y) is invertible.

The stable manifold theorem describes the (bad) manifolds of convergence around stuck
points.

Theorem 13 Let §j be a fized point of the C' local diffeomorphism ¢ : R™ — R™. Let m
be the dimension of the span of the eigenvectors of ¢'(y) whose corresponding eigenvalues
are at most 1 in absolute value. The center stable manifold W is an embedded C* disk '
of dimension at most m. For some open ball B around § and some constant k < 1: (1)
d(W)NB C W, and (2) ¢'(y) € B for allt > 0 only ify € W (which implies I1,(§)NB C W.)
That is, under the action of ¢, for some distance € > 0 from §: (1) all y in W which become
e-close remain in W, and (2) all e-close y which remain e-close are in W (which implies all
trajectories converging to § must enter W ). (Shub et al., 1987, Theorem III.7, page 65)

Each stuck point g is unstable (having 7 < m), and therefore its manifold of convergence is
null:

Lemma 14 Instability: at every stuck § and L > 0, ¢' (§) has an eigenvalue with absolute
value strictly greater than 1.

This implies the smooth map does not get stuck.

Lemma 15 Not stuck here: at each stuck g, for all L > Lo(y), Ir(y) has probability 0.
Extending this result to uncountably infinite stuck points requires a covering argument.
Lemma 16 Not stuck anywhere: Usper, 5 Ursro@g) [L(J) has probability 0.

Finally, not getting stuck implies convergence; this completes the proof of theorem 3.
Lemma 17 Strict decrease: ¢'(y) strictly decreases to 0 with probability 1.

Since the smooth map doesn’t get stuck for sufficiently large L, it may seem obvious that
the algorithm doesn’t get stuck either. However, extending results about smooth maps to
nonsmooth maps is technically subtle; we leave this extension for future work.

1. A set which is C'-diffeomorphic to the unit Euclidean ball.

10
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Figure 5: For different noise levels increasing with k, correlation (vertical) varying with the
amount of data (horizontal). (Pegasos), (-regularized logistic regression (LIBLINEAR),
and SoA, relative to the analytically-calculated correlation of the optimal halfspace.

4. Experiments

These experiments evaluate SoA’s ability to fit noisy or complicated data. This requires
efficiently coping with inconsistency while avoiding overfitting. As we shall see, SoA is the
only algorithm which does both, and thus avoids the compromises of linear classifiers and
previous nonlinear classifiers.

4.1 Increasing margin noise for linear classifiers

It may be tempting to think of noise as a theoretical nuisance which only hurts the perfor-
mance of classifiers in complicated situations. This experiment dispels that misconception:
very simple noise can utterly foil algorithms based on convex relaxation, whereas SoA
copes gracefully. The inputs are standard normals of dimension n = 128. The outputs are
generated by a halfspace hoo and flipped with probability increasing with their unsigned
margin (their distance from the decision boundary).

| i i)

yi = sen({w, 23)) - 1 with probability e
—1 otherwise

In high dimension, the overwhelming majority of points have small margin, so the parameter
k exponentially increases the flip probability. A simple integral calculates the correlation of
the initial halfspace, labeled in blue. Relaxation cannot cope with higher levels of noise. By
contrast, SoA converges to the calculated optimum. SoA’s ability to cope with this sort of
noise is not novel, but is rather a prerequisite to the complications of the next experiment.

11
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4.2 Juntas and N halfspaces

This experiment shows SoA can (weakly) fit very challenging functions without overfitting.
Juntas are boolean functions {—1,1}" — {—1,1} that depend on only k& < n input coor-
dinates. Since a junta is expressible as sgn(p(z)), where p is a degree-k polynomial, it is
possible to fit them with lifting (or simply exhaustive search) in n®*) time. The challenge
is to fit lower-dimensional classifiers while avoiding computational intractability. In the
presence of noise, this is considered the most fundamental (and vexingly unresolved) problem
in learning theory (Mossel et al., 2003). Section 6.6 briefly reviews juntas and their various
difficulties. Intuitively, they are difficult because they don’t have local structure which
may be exploited by, say, a well-architected neural network. It is challenging to devise
good features besides degree-k products; lower-order algorithms must be sensitive to tiny
correlations. (Intersections of halfspaces are not juntas, but are difficult in the same way, so
they are included as well.)

4.2.1 EXPERIMENT DESIGN

SoA is compared to practical algorithms which fit linear classifiers. As observed in the
first experiment, fitting them by convex relaxation is susceptible to inconsistent outputs.
However, when the inputs are nicely distributed, some algorithms can cope with limited
inconsistency. For example, iteratively filtering outliers via “localization” works when the
inputs have logconcave distribution (Awasthi et al., 2016). The following two randomized
algorithms are practical and achieve state-of-the-art guarantees:

e Least-squares initialization (LSQI): on a small subsample, guess labels for the dataset
(which will be correct with some exponentially small probability), fit a least-squares
vector to them, and use it as initialization for a first-order method (Zhang et al., 2015).

e Stochastic gradient Langevin dynamics (SGLD), which is stochastic gradient descent
with step size n and Gaussian noise with variance proportional to 1/n (Zhang et al.,
2017).

All three of these algorithms are unbiased. However, conjunctions and intersections of
halfspaces are very biased: the number of positive examples drops exponentially with k. On
the other juntas, we also compare to the two following deep classifiers:

e XGBoost, a large-scale implementation of boosted decision trees that is a mainstay of
machine learning competitions (Chen and Guestrin, 2016).

e A multilayer perceptron (MLP) consisting of 10n hidden units, followed by a ReLu
nonlinearity, fully connected to an output layer followed by a tanh sigmoid. It is
trained by minimizing hinge loss with a stochastic first-order method. It incorporates
a dropout probability of 0.1.

For conjunctions and parities, the average vector E (x - y) is zero; as described in section 5,

this halts first-order methods as well as SoA. We break symmetry by partitioning the inputs
according to a uniformly random halfspace, and then run the training algorithms separately
on each partition.
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Figure 6: On low-dimensional (n = 12) data, correlation (vertical) varying with the complex-
ity parameter k (horizontal), for , SGLD, SoA, and (on the unbiased data), XGBoost
and MLP. For majority, when k is odd, the outputs are slightly imbalanced.

Low-dimensional (n = 12) experiments with all m = 2" training inputs assess the fitting
capacity of the algorithms (fig. 6). Higher-dimensional experiments (n = 64) with just
m = 2048 training inputs assess susceptibility to overfitting and asymmetry (fig. 7). All
inputs are sampled uniformly from {—1,1}" and the outputs have no noise. k will vary
between 2 to 10 to assess how the algorithms cope with increasingly complex functions.
Each experiment is averaged over 8 runs.

4.2.2 RESULTS

On the easier juntas (conjunctions, majority, and pairs), none of the methods seemed
particularly susceptible to overfitting. For each algorithm, the train-true deviation seems
proportional to its true correlation. MLP’s test correlation is sometimes higher than its
trainin due to the randomness of dropout. On parity or intersections of halfspaces, SoA and
SGLD seems to overfit for k > 4. The next experiment sees how much data is needed to
ameliorate this.

The algorithms distinguish themselves by their capacity to fit. Despite employing deep,
expressive classifiers, XGBoost and MLP failed. For larger k, pairs becomes imbalanced, so
XGBoost and MLP ‘unfairly’ improve. SGLD generally outperformed LSQI. SoA consistently
demonstrated the most capacity, particularly on conjunctions. This performance, though
notable, does not insinuate that it learns juntas, or that doing so is even possible. Overall,
the experiments suggest some juntas are easier than others.
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Figure 7: On high-dimensional (n = 64) data, correlation (vertical) varying with the
complexity parameter k (horizontal), for , SGLD, SoA, and (on the unbiased data),
XGBoost and MLP. Training and true correlations are dotted and solid, respectively. The
majority plot is smooth because the output balance does not manifest in the training data.

We did not record training time, but generally observed that XGBoost was the fastest
(due to its high-quality implementation), followed by SoA and MLP. SGLD and LSQI
were substantially slower due to the large number of stochastic gradient steps and random
initializations, respectively.

4.3 Revisiting parity

In the previous experiment, SoA is the only method which achieves nontrivial correlation
with parity. However, the train-test deviation is extreme. This leaves open the possibility
that, with enough training data, SoA can achieve nontrivial true correlation. This experiment
shows SoA succeeds in doing so, whereas relaxation (still) fails and lifting needs too much
time and data. This experiment adopts the setup of (Klivans and Kothari, 2014). The
inputs are standard normals of varying extrinsic dimension n. The outputs are generated by
a parity of fixed size k = 3; that is, the product of the sign of k£ coordinates. Relaxation is
no better than random guessing. Kernel SVM with a degree-(k 4+ 1) polynomial is reliable
because it subsumes the degree-k parity function. However, as the extrinsic dimension
increases, it requires an overwhelming amount of training data. SoA uses a modicum of
data and reliably achieves a nontrivial correlation. This does not insinuate that SoA learns
parities, which would require maintaining correlation as k increases.
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Figure 8: Correlation (vertical) varying with the amount of training data (horizontal) for
SVM (LIBLINEAR), degree-4 polynomial SVM (LIBSVM), and SoA.

5. Conclusion

This paper proposed a new approach to classification. It is based on new classifiers (smooth
lists of halfspaces) and a new iterative learning algorithm (the sequence of averages). We
theoretically examined it with basic statistical tools (based on VC dimension and Rademacher
complexity) and more involved algorithmic tools (from dynamical systems). We hope the
algorithm’s qualitative novelty and quantitative performance motivate further research of
the following questions.

Are smooth lists provably worthwhile? Emnlarging the set of classifiers beyond linear
classifiers gives the training algorithm some flexibility to avoid computational intractability.
SoA is experimentally superior to state-of-the-art linear classifiers, but the latter might be
improvable. Is there data which provably can be fit by SoA, but cannot be efficiently fit by
any linear classifier? Conjunctions are a possible candidate.

When does SoA yield good classifiers? Theorem 3 guarantees the classifier is not
prematurely truncated, but does not lower bound its correlation, nor does it upper bound its
depth. Due to the relationship with smooth halfspaces elucidated in theorem 2, we wonder
if, with a reasonable amount of time and data, the classifier’s correlation exceeds that of
the best smooth halfspace. This would require restrictions on the distribution of inputs and
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outputs, since agnostically learning smooth halfspaces is conjectured to be computationally
intractable (Shalev-Shwartz et al., 2011; Daniely, 2016).

Are alternatives to averaging useful? The average vector is fast to compute and allows
the dual updates to be expressed as a continuous map. However, the corresponding halfspace
may have poor correlation, even if the inputs are normally distributed (Awasthi et al., 2015
theorem 5). It is worth considering alternatives to the average, but some natural choices
have caveats. First-order maximization, which yields a local maximum of the correlation, is
inadvisable, since it causes the algorithm to immediately get stuck. If w; is a critical point
of the correlation, then the average vector is subsequently zero:

d

0= —
de

(h) _E <€f|<w1,a:>|x . y> — wy

w=w1

Relaxation (minimizing a convex loss ¢) makes progress only if the average does. That is, if
the average is zero, then all relaxations fail in the sense that the minimizer of ¢ is always
zero. To contradict the existence of a solution w with lower loss, apply convexity twice:

0 <{(0) — E({((w,x) y)) < £0) — £E ((w, z) y))
< —(0)E ((w, ) y) = —£'(0)0

The first inequality is the assumption to be contradicted; the second is the zero-order
definition of convexity; the third is the first-order definition of convexity. Substituting the
zero joint average yields the contradiction.

How should learning be formulated as iterative optimization? There are two usual
answers:

1. with classifiers of fixed depth (such as support vector machines, neural networks, and
boosted ensembles) whose parameters are iteratively optimized (via, e.g., gradient
descent) to maximize correlation. Each iteration may have arbitrarily small size. This
smoothness confers many advantages: for example, each iteration may involve only a
fraction of the data, as in stochastic gradient descent.

2. with classifiers of growing depth (such as decision trees and lists) trained in discrete,
effectively irreversible steps. Many algorithms for training decision trees are consistent
in the sense that, as the amount of data increases to infinity, along with the depth
of the tree, the correlation of ¢ approaches the maximum achievable by any classifier.
However, trees of large depth may not be practical, since their size may be exponential
in their depth.

We have proposed a classifier and algorithm which combine aspects of both: it has unbounded
depth and never revises previously added layers; however, it is smoothly trained in steps
of arbitrary granularity. We hope to understand how this qualitative difference affects
fundamental tradeoffs in learning.
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6. Appendix
6.1 Proof of theorem 4
Assume a = (w,x) > 0; the case a < 0 is symmetric.
f8w,(1-8)w ()
—(l—eP 41— Q1—eP)1—-e 0Py
=1—e P ePol— e (1-Aay
=1 - ¢ Pa—(1-Pa _ how ()

6.2 VC and Rademacher complexity review

Recall the Vapnik-Chervonenkis bound for halfspaces, which is denoted by Aoy for normal
vector w.

Theorem 18 If m = O(n/e?), then supp E (sup, X(hoow) — X(hoow)) < € (Boucheron
D~D
et al., 2005, Theorem 3.4).

Bounding the Rademacher complexity bounds the required amount of data.

Theorem 19 With probability 1 — § over the sample D ~ D:

8log(1/9) A
m z m = ?ggb((f) —X(f)] <e

(Boucheron et al. (2005) Theorem 3.2).

6.3 Proof of theorem 2

Proof by induction on the list length 7. In the base case T = 2, let ||w1|| = £1 and
|lwa|| = B — B1. The Rademacher complexity R(F3) is E (7@(]—'5)), the expectation of the
D,o

training Rademacher complexity:

R(Fs) = sup E (hu, ()05 + (1 = [huy (2)]) by ()02)

w1,we
<sup B (hu, (2)00) + sup B (1~ |hu, (@), (2)02)
w1 w1,w2

:supél (P, (2)02) + sup P (wy pausses)]gi;)(hw2 (x)o | w1 passes)

w1 wi1,w2
<SUPE (hy, (2)02) + sup E (hy,(2)os | w1 passes)

wy T wi,wz T
The first inequality is the triangle inequality. w; affects the second correlation only through
reweighting of the outputs, which is equivalently written in terms of conditional expectation.
Conditioning the probability of input x on the event ‘w; passes’ means multiplying the
probability of z by 1 — |hy, ()|, the probability that w; passes on x, and normalizing by
the overall pass probability E (1 — |hy, (z)|) = P (w; passes). The final inequality drops the

x
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pass probability of at most 1. To bound the Rademacher complexity, apply the worst-case
bound theorem 5 to the different distributions:

R(Fp) < Rp, + Rp-p, = Rg

This bound seems crudely pessimistic. Intuitively, a smooth halfspace at the end of a list has
lower complexity than an independent one, but the bound does not reflect this. Algebraically,
later correlations have decreasing weight (in the lower-magnitude outputs), but the proof
does not exploit this. Without restrictions on the distribution of inputs, this result is tight
even for T' = 1. Furthermore, we have already seen numerical evidence against substantially
tighter bounds, even when the inputs are normally distributed.

6.4 Proof of theorem 1

Let D; be the conditional distribution of inputs that pass to element ¢ in the list. (That is,
elements wi, ... w;—; do not return.) Let x; be the corresponding correlation, so we may
decompose the correlation of the smooth list as correlations of smooth halfspaces.

t—1
Dy=7DD| (/\ w; passes)

i=1

t—1
() =3P ( A wi p> Xt ()
t =1

Let ‘use w;’ mean the first t — 1 elements of the list pass on the input to element ¢, which
returns. Then we can decompose the smooth list correlation as conditional correlations over
halfspaces.

t—1
use wy = (/\ w; passes) A wy returns
=1

x(fr) = ZP (use wy) X(hoow, | use wy) = ZP (use wy) Xt(hoow, | we returns)
t t

Note the probability an element passes or returns on an input doesn’t depend on the
associated output. If the empirical and true correlations shared the same distribution over
inputs, we could individually bound the deviation between conditional correlations. Of course,
the empirical input distribution is discrete, whereas the true input distribution has density.
We can still employ this proof strategy, albeit with some mild technical complications, by
introducing a ‘tilde’ correlation which closely approximates the empirical correlation, yet
does have the true distribution over inputs. Let g(z) be a continuous function which places
(signed) Gaussian bumps at the input data, and cancels out the probability density:

m

N | Yi L jei—a|?/02
hle) = ; D(x;) 27rae

Since x; is drawn from D, the density in the denominator is strictly positive. As o — 0, the
bump approaches the Dirac delta of the distance. So within the correlation integral:

2)§(2)D() > (e
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at © = z; and 0 at all other . The empirical correlation may be reformulated (up to
arbitrarily small error) to share the true input distribution by replacing y with ¢:

()2(0) = E (c(z)y(x)) = ZP (wy returns) Xt (hoow, | Wi returns)) < x(c)as o —0

Conditioning D on ‘w; passes’ or ‘w; returns’ preserves density with respect to Lebesgue
measure, so by the same argument:

Xt(c | wy returns) <> x¢(c | wy returns) as ¢ — 0

Taking ¢ — 0:
(Sup x(fr) — (fT))
DND {wt}
-]
DND {wt}
= E sup (use wy) (Xt(hoow, | we returns) — X¢(hoow, | wy returns))
DND {w} i

< E |supsup Zut (Xt(hoow, | wi returns) — X¢(hoow, | we returns))

< SupZut E | sup x¢(hoow, | wi returns) — X¢(hoow, | wi returns)
u D~D

{we}

HsupZut E <?11011§ Xt (hoow, | we returns) — X¢(hoow, | we returns))
t

The 3rd line conditions on ‘use w;’, which is the same for the true and tilde correlations.
The 4th line relaxes the supremum over {P (use w;)} to all discrete distributions u. The 5th

line pulls supremums outside expectations. The 6th line replaces the empirical conditional
correlations. Let us examine how the final line invokes theorem 18. Note that w; only affects
the remainder of the list through Dy, which is just a conditional distribution to which the
theorem applies. The further conditioning on ‘w; returns’ just multiplies each term of the
deviation by the same number (at most 1), which is handled by the VC analysis.

6.5 Proof of theorem 3

PROOF OF SMOOTHNESS

Some basic algebraic properties of the smooth absolute value function z:

e for all a,la| > 2(a) and|a| — z(a) < 1 log2,
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Figure 9: Some elementary derivatives for completeness.
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Figure 10: Applications of L’Hopital’s rule at |||, = 0.
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The blocks of equations in section 6.5 and fig. 11 compute the derivative of ¢.
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Figure 11: The derivative of ¢ at ||y|| > 0, and the derivative at ||7|| = 0 in the direction
of §j. Take coordinate directions §; = e;. Note ||;]|x = /{ej, Ke;) = \/Kj; = 1.
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PROOF OF ALMOST DIFFEOMORPHISM

__B K
e lvix #(K) is strictly positive; by Sylvester’s lemma, it suffices to show there is a direction

r such that, for all sufficiently small € > 0,
J(y+er) =1 — Bdiag(y + er)Q(y + er)

where

Q(y)

 lyllx lyllx \lylx

Ky) [ Ky \"
(diag<z’<Ky>>K () )
is full rank. det(J(y)) = 0, and we will show its derivative in the direction of r is nonzero.
Set r to a random vector with iid N(0,1) coordinates. Orthogonally decompose r = 7 + 7
where ||7||, = 0. Note that () does not depend on components 7 in the nullspace of K; that
is, Q(r) = Q (7). By the product rule:

d
— &J(y +er)
:%diag(y +er)Q(y + er)
=diag(r)Q(y + er) + diag(y + er) <;l€Q(y + 67“)>

=diag (7 + 7) Q (y + er) + diag (y + € (7 + 7)) <;€Q (y + ef))

—=diag (7 4 7) <Q (y + ) + %Q (y + ef)) + diag(y) <;€Q (y + eﬂ)

As € — 0, this approaches: diag(r)Q(y) + R () where
. : . d .
R (#) = diag(y) (hm —Q (y+ 67‘))
e—0 de
By Jacobi’s formula and linearity of trace:

1i_r>r(1) % det(J(y+er)) = 11_r>r(1) tr (adj(J(y +er)) (iJ(y + er)))
=tr(adj(J (y))diag(r)Q(y)) + tr (adj(J (y)) R (7))

The first trace is an inner product between a normal vector and a fixed vector, and is almost
surely nonzero. Conditioning on 7, r still has the same normal distribution, so the traces are
independent. Therefore the value of the first trace is almost surely not equal to the second.

PROOF OF LOCAL DIFFEOMORPHISM

Figure 11 computes J = ¢/(§) = I — LY Q, for a fixed matrix @ and Y = diag(g). To
make J invertible, it suffices to choose L larger than the inverse of the smallest nonzero
eigenvalue of Y'(). Let us show this eigenvalue is at least A, where § is the value of the
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smallest coordinate ¢; of ¢, and A is the smallest eigenvalue of Q). Since g is strictly positive,
Y Q has the same eigenvalues as VY QY. In the worst case, the smallest eigenvector of Q

is €5
eI VY QVYe; = Voel QVioe; > o)
Therefore L > (§A)~! suffices.

PROOF OF INSTABILITY

Lemma 20 Not ezactly orthogonal: with probability 1, K;; = (x;,x;) yiy; # 0 for all
i,j < m.

Proof For fixed z, {' : (z/,2) = 0} has probability 0. Similarly, for countably many z;,
{2/ : Vi (2 2;) =0} = U; {2’ : (', x;) = 0} has probability 0. [ ]

Figure 11 computes J = ¢/(7). Let a be the minimum value of K o K, which, by the
immediately preceding lemma, is strictly greater than 0 with probability 1. K o K and gy
have strictly positive entries, so

g7 (K o K)1 > m?al|jl:

Observe 17J1 > 171 = m, which implies J has an eigenvalue with absolute value strictly
greater than 1:

1TJ1=m - BL(Kj— (Ko K)j)"1
=m+ BLy (K o K)1

>m

PROOF OF NOT STUCK HERE

The following lemma encapsulates the core idea of “running the algorithm in reverse” away
from null regions of convergence.

Lemma 21 Not stuck in null sets: if I5,(g) N B is null for any ball B around g, then I1,(g)
has probability zero.

Proof For each y € I1(7), there is an iteration T" after which the map remains in B and
keeps on converging to §: ¢’ (y) € IL(§) N B. Let T* be the largest such iteration over
all y, so ¢7 (I (§)) C IL(§) N B. By theorem 10 and Singularity, ¢~ preserves null sets.
Tterating, ¢~ (I(§) N B) is null and contains Ir(). [ ]

First, let us assume g is strictly positive.

Lemma 22 Null around strictly positive: if y is strictly positive, then Ip(y) N B has
codimension 1 (is null) for some B around .

Proof By Local Hyperbolicity, for sufficiently large L, ¢ is a C! diffeomorphism locally at
g. Applying the stable manifold theorem, (I1(g) N B) C W. By Instability, these sets have
codimension 1. |

Now let us reduce the general case to the strictly positive case.
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Lemma 23 Null around zeros: Suppose a stuck jj has k zero coordinates. Let m : R™ : R™—F
project them away, overload ¢ : R™™F — R™* to drop the corresponding rows and columns
of K from the definition of ¢, and similarly overload Iy,. Then for all L > 0, for some ball
B around y, m7(I(g) N B) = I(n(g)) Nw(B), so I(y) N B is null.

Proof To ease notation, let £ = 1 and have the first coordinate be zero. Note ¢([0, 7(y)]) =
[0, ¢((y))]. Since ¢ is continuous, taking y; to zero interchanges:

lim ¢(y) = ¢( lim y) = [0, (7 (y))]

y1—0 y1—0

For all y € I(y) and € > 0, there is an iteration 7' > 0 such that for all additional ¢ > 0,
o' (m(¢T (y))) is e/2-close to m(¢Tt(y)), which is in turn e/2-close 7(§). The first statement
is because of the previously described interchange of projection. The second is because

y € B implies 7(y) € 7(B). So, for y € I(§) N B, ¢!(n(y)) remains e-close to 7 (7), i.e.
m(y) € I(w(g)) Nmw(B). This set has codimension 1 by theorem 22 applied to the lower-
dimensional map. Since 7 reduces the dimension by exactly &, the result follows. |

PROOF OF NOT STUCK ANYWHERE

Since ¢ is continuous (the preimage of open sets is open), each I1(y) is open. According to
Lindel6f’s lemma, every open cover has a countable subcover. Therefore there is a countable
subset Y such that

P (Ustuck § Ur>10(5) 1L(9)) <P (Ugef/ UL>Lo(7) IL(Z?)) =0

where the last equality is due to theorem 15. A similar reduction was employed by Panageas
and Piliouras (2016).

PROOF OF STRICT DECREASE

Note y = e”““K o ¢(y) and ¢(y) > 0. By the definition of the ¢; norm, Jensen’s
inequality with a convex function on the left and a distribution on the right, and the
first-order approximation of the exponential function:

iyl

llo(w)ll

<NK <Ky> Py >
o)l

o(y)
(=(Kv). 58 )

B
1yllx - llo@)lh

This rate of decrease is strictly greater than 1; if it is exactly 1, then ||y||, = 0, which is
disallowed (with probability 1) by theorem 16. This inequality at ||y||, = 0 extends to a
lower bound for other values of ||y||,. (Or, alternatively, an upper bound on ||y||, for other

B
Ze”y”K

>1+ (2(Ky), 9(y))
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values of the rate.) Formally, H¢|>|EJ:J|)1H1 = pP (for p > 1) implies an upper bound on ||y||x that

goes to 0 as r — 1. Begin with the second-to-last line from above, take the logarithm of
both sides, and then substitute 1/ ||¢(y)||; = p°/ ||y||; and the definition of ¢ on the right

hand side:
Blog(p) > 0 <Z(Ky), (b(y)>

“lyllx 16(y) 1
B B8
.. <z(Ky) Tl W Y >
log(p) \ [lyllx 1yl
Tl(yl\\{z) — 0 if and only if ||y|][x — 0. This is necessary to satisfy the above inequality, since

% — 00 as p — 1. Therefore ||¢'(y)||1 is strictly decreasing unless ||¢(y)||x = 0, which

(by theorem 16) implies ¢(y) = 0. Note, since |a| > z(a), the same result holds for « as
well as ¢.

6.6 Brief introduction to juntas

Our experiments involve the following well-studied boolean functions, ordered roughly in
terms of complexity or difficulty.

Conjunctions are 1 if all the coordinates in S are 1, and —1 otherwise. They are
(affine) halfspaces sgn(} ;g 2; — k). When the inputs are ‘symmetrically’ distributed on
the hypercube, lifting takes just n©(°81/€) time, which is formally independent of k despite
being exponential in the excess error € (Feldman and Kothari, 2015). For other distributions
on the hypercube, it is NP-hard to even weakly fit a halfspace (Feldman et al., 2012). They
have low noise sensitivity because they are monotone.

Majorities take the ‘majority vote’ sgn(>, ;) within S; they are halfspaces defined by
the indicator vector of S. Fitting majorities very accurately is likely difficult since they are
significantly correlated with parity functions (Kalai et al., 2008). Majority is , in a sense,
the most noise-stable boolean function (Mossel et al., 2005), so overfitting may not be a
concern.

Pairs (aka 2-tribes) are defined, for even k, as the disjunction (“or”) of £ disjoint
conjunctions of pairs of coordinates. Tribes are not well-studied in learning theory; they
were recently devised as a boolean function where each coordinate individually exhibits
the least ‘influence’ on the output (Ben-Or and Linial, 1985). For larger tribe sizes, these
functions are the most sensitive to large amounts of noise (Mossel and O’Donnell, 2002),
but this may not manifest for pairs.

Parities [[;cq i are perhaps the most notorious functions in learning theory; many
difficult, open problems reduce to learning parities with noise (Feldman et al., 2009). They
are also the most noise-sensitive boolean functions. We expect all the learning algorithms to
degrade as k increases.

Intersections of halfspaces are not juntas, but they may be e-approximately learned by
lifting in roughly nO(K/€) time (Klivans et al., 2002). For a perfect fit, an Q(n)-degree
polynomial is required even for k& = 2 (Sherstov, 2013). Furthermore, for non-uniform
distributions on {—1,1}", if kK = n® (for any constant ¢ > 0), learning is cryptographically
hard (Klivans and Sherstov, 2006). We expect all the learning algorithms to degrade as k
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increases. However, intersections of random halfspaces have relatively low noise sensitivity
(Kane, 2014), so we might expect train-test deviation to be tame.
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